Articles | Volume 8, issue 2
https://doi.org/10.5194/tc-8-439-2014
https://doi.org/10.5194/tc-8-439-2014
Research article
 | 
18 Mar 2014
Research article |  | 18 Mar 2014

Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch

Related authors

Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023,https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022,https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Sea ice and water classification on dual-polarized Sentinel-1 imagery during melting season
Yu Zhang, Tingting Zhu, Gunnar Spreen, Christian Melsheimer, Marcus Huntemann, Nick Hughes, Shengkai Zhang, and Fei Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-85,https://doi.org/10.5194/tc-2021-85, 2021
Revised manuscript not accepted
Short summary
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021,https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020,https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary

Cited articles

Bilello, M.: Formation, growth, and decay of sea-ice in the Canadian Arctic Archipelago, Arctic, 1961.
Brown, M., Torres, F., Corbella, I., and Colliander, A.: SMOS Calibration, IEEE Transactions on Geoscience and Remote Sensing, 46, 646–658, https://doi.org/10.1109/TGRS.2007.914810, 2008.
Camps, A., Gourrion, J., Tarongi, J. M., Gutierrez, A., Barbosa, J., and Castro, R.: RFI Analysis in SMOS Imagery, in: Geoscience and Remote Sensing Symposium (IGARSS proceedings 2010), 2007–2010, 2010.
Castro, R.: Analytical Pixel Footprint, Tech. rep., available at: http://www.smos.com.pt/downloads/release/documents/SO-TN-DME-L1PP-0172-Analytical-Pixel-Footprint.pdf (last access: 17 March 2014), 2008.
Corbella, I., Duffo, N., Vall-llossera, M., Camps, A., and Torres, F.: The visibility function in interferometric aperture synthesis radiometry, IEEE Trans. Geosci. Remote Sens. 42, 1677–1682, https://doi.org/10.1109/TGRS.2004.830641, 2004.
Download