Articles | Volume 7, issue 6
https://doi.org/10.5194/tc-7-1819-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-1819-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps)
L. Carturan
Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
C. Baroni
Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy
M. Becker
Department of Geological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
A. Bellin
Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano 77, 38123 Trento, Italy
O. Cainelli
Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano 77, 38123 Trento, Italy
A. Carton
Department of Geosciences, University of Padova, Via G. Gradenigo 6, 35131 Padua, Italy
C. Casarotto
Museo delle Scienze, Via Calepina 14, 38122 Trento, Italy
G. Dalla Fontana
Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
A. Godio
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
T. Martinelli
Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano 77, 38123 Trento, Italy
M. C. Salvatore
Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy
Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
Related authors
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
EGUsphere, https://doi.org/10.5194/egusphere-2023-2689, https://doi.org/10.5194/egusphere-2023-2689, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look visually relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in the rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~30 % of the ice stored in the rock glaciers in the study area.
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023, https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
Short summary
This paper presents a new dataset of air, englacial, soil surface and rock wall temperatures collected between 2010 and 2016 on Mt Ortles, which is the highest summit of South Tyrol, Italy. Details are provided on instrument type and characteristics, field methods, and data quality control and assessment. The obtained data series are available through an open data repository. This is a rare dataset from a summit area lacking observations on permafrost and glaciers and their climatic response.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Mattia Zaramella, Marco Borga, Davide Zoccatelli, and Luca Carturan
Geosci. Model Dev., 12, 5251–5265, https://doi.org/10.5194/gmd-12-5251-2019, https://doi.org/10.5194/gmd-12-5251-2019, 2019
Short summary
Short summary
This paper presents TOPMELT, a parsimonious snowpack simulation model integrated into a basin-scale hydrological model. TOPMELT implements the full spatial distribution of clear-sky potential solar radiation by means of a statistical representation: this approach reduces computational burden, which is a key potential advantage when parameter sensitivity and uncertainty estimation procedures are carried out. The model is assessed by examining different resolutions of its domain.
Daniela Festi, Luca Carturan, Werner Kofler, Giancarlo dalla Fontana, Fabrizio de Blasi, Federico Cazorzi, Edith Bucher, Volkmar Mair, Paolo Gabrielli, and Klaus Oeggl
The Cryosphere, 11, 937–948, https://doi.org/10.5194/tc-11-937-2017, https://doi.org/10.5194/tc-11-937-2017, 2017
Short summary
Short summary
We propose a sub-seasonal timescale based on pollen analyses for a Mt. Ortles firn core. The method can be applied to all types of glaciers, provided the proximity of the pollen source and a negligible time lag between pollen production and its deposition on the glacier. By combining pollen dating with a mass balance model we found evidence that pollen grains are resilient to downward transport by percolating water and that pollen shows a high potential for inferring past climatic conditions.
Federico Di Paolo, Barbara Cosciotti, Sebastian E. Lauro, Elisabetta Mattei, Mattia Callegari, Luca Carturan, Roberto Seppi, Francesco Zucca, and Elena Pettinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-267, https://doi.org/10.5194/tc-2016-267, 2016
Preprint retracted
Short summary
Short summary
Snow water equivalent is an important parameter for hydrological and climate change studies, however its measurement is tedious and time consuming. In this paper we show that it is possible to accurately measure snow water equivalent using electromagnetic methods. During a field campaign we tested the performances of traditional methods vs. those of a Ground Penetrating Radar, founding a very good agreement between the snow water equivalent values computed with the two different methods.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Luca Carturan, Carlo Baroni, Michele Brunetti, Alberto Carton, Giancarlo Dalla Fontana, Maria Cristina Salvatore, Thomas Zanoner, and Giulia Zuecco
The Cryosphere, 10, 695–712, https://doi.org/10.5194/tc-10-695-2016, https://doi.org/10.5194/tc-10-695-2016, 2016
Short summary
Short summary
This work analyses the longer mass balance series of Italian glaciers. All glaciers experienced mass loss in the observation period, with increasing mass loss rates mainly due to increased ablation during longer and warmer ablation seasons. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain accumulation areas. Because most of the monitored glaciers are at risk of extinction, they require a soon replacement.
L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana
The Cryosphere, 9, 1129–1146, https://doi.org/10.5194/tc-9-1129-2015, https://doi.org/10.5194/tc-9-1129-2015, 2015
Short summary
Short summary
Using a dataset from 12 weather stations collected in 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation, with significant impacts for glacier mass balance modeling.
L. Carturan, R. Filippi, R. Seppi, P. Gabrielli, C. Notarnicola, L. Bertoldi, F. Paul, P. Rastner, F. Cazorzi, R. Dinale, and G. Dalla Fontana
The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013, https://doi.org/10.5194/tc-7-1339-2013, 2013
Andrea Vergnano, Diego Franco, and Alberto Godio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2569, https://doi.org/10.5194/egusphere-2024-2569, 2024
Short summary
Short summary
We used radar to measure ice thickness in mountain glaciers, but it is challenging when the ice is temperate, or warm, due to signal scattering. Radar surveys of Rutor Glacier were inaccurate, so we used computer models to better estimate its thickness. Comparing estimates from computer models with radar measurements gave us a more accurate map, revealing more ice than previously thought. This combined method can improve future ice surveys and planning.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
EGUsphere, https://doi.org/10.5194/egusphere-2023-2689, https://doi.org/10.5194/egusphere-2023-2689, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look visually relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in the rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~30 % of the ice stored in the rock glaciers in the study area.
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023, https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
Short summary
This paper presents a new dataset of air, englacial, soil surface and rock wall temperatures collected between 2010 and 2016 on Mt Ortles, which is the highest summit of South Tyrol, Italy. Details are provided on instrument type and characteristics, field methods, and data quality control and assessment. The obtained data series are available through an open data repository. This is a rare dataset from a summit area lacking observations on permafrost and glaciers and their climatic response.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022, https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
Short summary
In this work, we introduce a methodology for devising reliable future high streamflow scenarios from climate change simulations. The calibration of a hydrological model is carried out to maximize the probability that the modeled and observed high flow extremes belong to the same statistical population. Application to the Adige River catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow for use in assessment studies.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Mattia Zaramella, Marco Borga, Davide Zoccatelli, and Luca Carturan
Geosci. Model Dev., 12, 5251–5265, https://doi.org/10.5194/gmd-12-5251-2019, https://doi.org/10.5194/gmd-12-5251-2019, 2019
Short summary
Short summary
This paper presents TOPMELT, a parsimonious snowpack simulation model integrated into a basin-scale hydrological model. TOPMELT implements the full spatial distribution of clear-sky potential solar radiation by means of a statistical representation: this approach reduces computational burden, which is a key potential advantage when parameter sensitivity and uncertainty estimation procedures are carried out. The model is assessed by examining different resolutions of its domain.
Elena Diamantini, Stefano Mallucci, and Alberto Bellin
Hydrol. Earth Syst. Sci., 23, 573–593, https://doi.org/10.5194/hess-23-573-2019, https://doi.org/10.5194/hess-23-573-2019, 2019
Short summary
Short summary
The description of pharmaceutical fate and transport introduced into a watershed is a challenging topic, especially because of the possible adverse effects on human health. In addition, an accurate estimation of solute sources and routes is still missing. This study uses a new promising modeling approach to predict pharmaceutical concentrations in rivers. Results show an interesting relationship between solute concentrations in waters and touristic fluxes.
Daniela Festi, Luca Carturan, Werner Kofler, Giancarlo dalla Fontana, Fabrizio de Blasi, Federico Cazorzi, Edith Bucher, Volkmar Mair, Paolo Gabrielli, and Klaus Oeggl
The Cryosphere, 11, 937–948, https://doi.org/10.5194/tc-11-937-2017, https://doi.org/10.5194/tc-11-937-2017, 2017
Short summary
Short summary
We propose a sub-seasonal timescale based on pollen analyses for a Mt. Ortles firn core. The method can be applied to all types of glaciers, provided the proximity of the pollen source and a negligible time lag between pollen production and its deposition on the glacier. By combining pollen dating with a mass balance model we found evidence that pollen grains are resilient to downward transport by percolating water and that pollen shows a high potential for inferring past climatic conditions.
Federico Di Paolo, Barbara Cosciotti, Sebastian E. Lauro, Elisabetta Mattei, Mattia Callegari, Luca Carturan, Roberto Seppi, Francesco Zucca, and Elena Pettinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-267, https://doi.org/10.5194/tc-2016-267, 2016
Preprint retracted
Short summary
Short summary
Snow water equivalent is an important parameter for hydrological and climate change studies, however its measurement is tedious and time consuming. In this paper we show that it is possible to accurately measure snow water equivalent using electromagnetic methods. During a field campaign we tested the performances of traditional methods vs. those of a Ground Penetrating Radar, founding a very good agreement between the snow water equivalent values computed with the two different methods.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Sebastiano Piccolroaz, Michele Di Lazzaro, Antonio Zarlenga, Bruno Majone, Alberto Bellin, and Aldo Fiori
Hydrol. Earth Syst. Sci., 20, 2047–2061, https://doi.org/10.5194/hess-20-2047-2016, https://doi.org/10.5194/hess-20-2047-2016, 2016
Short summary
Short summary
We present HYPERstream, an innovative, parsimonious, and computationally efficient streamflow routing scheme based on the width function instantaneous unit hydrograph theory. HYPERstream is designed to be easily coupled with climate models and to preserve the geomorphological dispersion of the river network, irrespective of the model grid size. This makes HYPERstream well suited for multi-scale applications (from catchment up to continental scale) and to investigate extreme events (e.g. floods).
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Luca Carturan, Carlo Baroni, Michele Brunetti, Alberto Carton, Giancarlo Dalla Fontana, Maria Cristina Salvatore, Thomas Zanoner, and Giulia Zuecco
The Cryosphere, 10, 695–712, https://doi.org/10.5194/tc-10-695-2016, https://doi.org/10.5194/tc-10-695-2016, 2016
Short summary
Short summary
This work analyses the longer mass balance series of Italian glaciers. All glaciers experienced mass loss in the observation period, with increasing mass loss rates mainly due to increased ablation during longer and warmer ablation seasons. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain accumulation areas. Because most of the monitored glaciers are at risk of extinction, they require a soon replacement.
L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana
The Cryosphere, 9, 1129–1146, https://doi.org/10.5194/tc-9-1129-2015, https://doi.org/10.5194/tc-9-1129-2015, 2015
Short summary
Short summary
Using a dataset from 12 weather stations collected in 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation, with significant impacts for glacier mass balance modeling.
L. Carturan, R. Filippi, R. Seppi, P. Gabrielli, C. Notarnicola, L. Bertoldi, F. Paul, P. Rastner, F. Cazorzi, R. Dinale, and G. Dalla Fontana
The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013, https://doi.org/10.5194/tc-7-1339-2013, 2013
A. Coppola, G. Leonelli, M. C. Salvatore, M. Pelfini, and C. Baroni
Clim. Past, 9, 211–221, https://doi.org/10.5194/cp-9-211-2013, https://doi.org/10.5194/cp-9-211-2013, 2013
Related subject area
Alpine Glaciers
Unprecedented 21st century glacier loss on Mt. Hood, Oregon, USA
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Distributed surface mass balance of an avalanche-fed glacier
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry
Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling
Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates
Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements
Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya
Spatial and temporal variations in glacier aerodynamic surface roughness during the melting season, as estimated at the August-one ice cap, Qilian mountains, China
Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area)
Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)
Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria
The European mountain cryosphere: a review of its current state, trends, and future challenges
Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017
The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)
Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)
Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss
Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes
Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s
Local reduction of decadal glacier thickness loss through mass balance management in ski resorts
Effects of local advection on the spatial sensible heat flux variation on a mountain glacier
Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo
Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery
Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal
Nicolas Bakken-French, Stephen J. Boyer, B. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
The Cryosphere, 18, 4517–4530, https://doi.org/10.5194/tc-18-4517-2024, https://doi.org/10.5194/tc-18-4517-2024, 2024
Short summary
Short summary
Repeat photography, field mapping, and remote sensing find that glaciers on Mt. Hood, Oregon, have lost about 25 % of their area in the first 2 decades of the 21st century and 17 % of their area in the last 7–8 years. The 21st century recession rate is more than 3 times faster than the 20th century average and 1.9 times faster than the fastest period of retreat within the 20th century. This unprecedented retreat corresponds to regional summer warming of 1.7–1.8°C relative to the early 1900s.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733, https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60-70% and that accounting for this effect results in less ice loss by the end of the century.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Short summary
Our analysis demonstrates the capability of machine learning models in estimating glacier mass balance in terms of performance metrics and dataset availability. Feature importance analysis suggests that ablation features are significant. This is in agreement with the predominantly negative mass balance observations. We show that ensemble tree models typically depict the best performance. However, neural network models are preferable for biased inputs and kernel-based models for smaller datasets.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023, https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary
Short summary
Temperature-index models have been widely used for glacier mass projections in the future. The ability of these models to capture non-linear responses of glacier mass balance (MB) to high deviations in air temperature and solid precipitation has recently been questioned by mass balance simulations employing advanced machine-learning techniques. Here, we confirmed that temperature-index models are capable of detecting non-linear responses of glacier MB to temperature and precipitation changes.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022, https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Short summary
We investigate fluctuations in Bhutanese lake-terminating glaciers focusing on the dynamics change before and after proglacial lake formation at Thorthormi Glacier (TG) based on photogrammetry, satellite, and GPS surveys. The thinning rate of TG became double compared to before proglacial lake formation, and the flow velocity has also sped up considerably. Those changes would be due to the reduction in longitudinal ice compression by the detachment of the glacier terminus from the end moraine.
Nicole Schaffer and Shelley MacDonell
The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022, https://doi.org/10.5194/tc-16-1779-2022, 2022
Short summary
Short summary
Over the last 2 decades the importance of Andean glaciers, particularly as water resources, has been recognized in both scientific literature and the public sphere. This has led to the inclusion of glaciers in environmental impact assessment and the development of glacier protection laws. We propose three categories that group glaciers based on their environmental sensitivity to hopefully help facilitate the effective application of these measures and evaluation of water resources in general.
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022, https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Short summary
The new Caucasus glacier inventory derived from manual delineation of glacier outlines based on medium-resolution (Landsat, Sentinel) and high-resolution (SPOT) satellite imagery shows the accelerated glacier area loss over the last 2 decades (2000–2020). This new glacier inventory will improve our understanding of climate change impacts at a regional scale and support related modelling studies by providing high-quality validation data.
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021, https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Short summary
We present and compare different geostatistical methods for underglacial bedrock interpolation. Variogram-based interpolations are compared with a multipoint statistics approach on both test cases and real glaciers. Using the modeled bedrock, the ice volume for the Scex Rouge and Tsanfleuron glaciers (Swiss Alps) was estimated to be 113.9 ± 1.6 million cubic meters. Complex karstic geomorphological features are reproduced and can be used to improve the precision of underglacial flow estimation.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021, https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary
Short summary
Glaciers and ice caps are currently the largest contributor to sea level rise. Global monitoring of these regions is a challenging task, and significant differences remain between current estimates. This study looks at glacier changes in High Mountain Asia and the Gulf of Alaska using a new technique, which for the first time makes the use of satellite radar altimetry for mapping ice mass loss over mountain glacier regions possible.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Vincent Peyaud, Coline Bouchayer, Olivier Gagliardini, Christian Vincent, Fabien Gillet-Chaulet, Delphine Six, and Olivier Laarman
The Cryosphere, 14, 3979–3994, https://doi.org/10.5194/tc-14-3979-2020, https://doi.org/10.5194/tc-14-3979-2020, 2020
Short summary
Short summary
Alpine glaciers are retreating at an accelerating rate in a warming climate. Numerical models allow us to study and anticipate these changes, but the performance of a model is difficult to evaluate. So we compared an ice flow model with the long dataset of observations obtained between 1979 and 2015 on Mer de Glace (Mont Blanc area). The model accurately reconstructs the past evolution of the glacier. We simulate the future evolution of Mer de Glace; it could retreat by 2 to 6 km by 2050.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
The Cryosphere, 14, 3235–3247, https://doi.org/10.5194/tc-14-3235-2020, https://doi.org/10.5194/tc-14-3235-2020, 2020
Short summary
Short summary
Simple models of glacier dynamics based on volume–area scaling underestimate climate sensitivity and response time of glaciers. Consequently, they may predict a faster response and a smaller long-term glacier loss. These biases in scaling models are established theoretically and are analysed in detail by simulating the step response of a set of 703 Himalayan glaciers separately by three different models: a scaling model, a 2-D shallow-ice approximation model, and a linear-response model.
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020, https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary
Short summary
Glacier surface roughness during melting season was observed by manual and automatic photogrammetry. Surface roughness was larger at the snow and ice transition zone than in fully snow- or ice-covered areas. Persistent snowfall and rainfall both reduce surface roughness. High or rising turbulent heat as a component of surface energy balance tended to produce a smooth ice surface; low or decreasing turbulent heat tended to produce a rougher surface.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Matthew Olson and Summer Rupper
The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, https://doi.org/10.5194/tc-13-29-2019, 2019
Short summary
Short summary
Solar radiation is the largest energy input for most alpine glaciers. However, many models oversimplify the influence of topographic shading. Also, no systematic studies have explored the variable impact of shading on glacier ice. We find that shading can significantly impact modeled solar radiation, particularly at low elevations, at high latitudes, and for glaciers with a north/south orientation. Excluding the effects of shading will overestimate modeled solar radiation for alpine glaciers.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018, https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Short summary
As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the flow of ice of the Rhine glacier at the Last Glacial Maximum to determine conditions at the ice–bed interface. Results indicate that portions of the ice lobes were at the melting temperature and ice was sliding, two conditions necessary for erosion by glacier. Conditions at the bed of the ice lobes were affected by climate and also by topography.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
Short summary
This study presents a reanalysis of the glacier mass balance record at Hintereisferner, Austria, for the period 2001 to 2011. We provide a year-by-year comparison of glaciological and geodetic mass balances obtained from annual airborne laser scanning data. After applying a series of corrections, a comparison of the methods reveals major differences for certain years. We thoroughly discuss the origin of these discrepancies and implications for future glaciological mass balance measurements.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Jakob F. Steiner, Philip D. A. Kraaijenbrink, Sergiu G. Jiduc, and Walter W. Immerzeel
The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, https://doi.org/10.5194/tc-12-95-2018, 2018
Short summary
Short summary
Glaciers that once every few years or decades suddenly advance in length – also known as surging glaciers – are found in many glaciated regions in the world. In the Karakoram glacier tongues are additionally located at low altitudes and relatively close to human settlements. We investigate a very recent and extremely rapid surge in the region that has caused a lake to form in the main valley with possible risks for downstream communities.
Levan G. Tielidze and Roger D. Wheate
The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018, https://doi.org/10.5194/tc-12-81-2018, 2018
Short summary
Short summary
This is one of the first papers containing the Greater Caucasus glacier area and number change over the 1960–2014 period by individual river basins and countries. During the research we used old topographical maps and Corona imagery from the 1960s, and Landsat/ASTER imagery from 1986/2014. The separate sections and slopes have been revealed where there are the highest indices of the reduction in the area of the glaciers.
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Short summary
In the paper, we demonstrate the potential of field and satellite hyperspectral reflectance data in characterizing the spatial distribution of impurities on the Morteratsch Glacier. In situ reflectance spectra showed that impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier. Laboratory measurements of cryoconite showed the presence of elemental and organic carbon.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Short summary
Our paper assesses the glacier mass change in the northern Patagonian Andes of Argentina and Chile, which is crucial to understanding how climate change is affecting them. We have found that between 2000 and 2012, glaciers in this region were slightly out of balance, with larger valley glaciers losing more mass than smaller mountain glaciers. The slightly negative mass balance of the northern Patagonian Andes contrasts with the highly negative mass balance of the Patagonian ice fields.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Andrea Fischer, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 10, 2941–2952, https://doi.org/10.5194/tc-10-2941-2016, https://doi.org/10.5194/tc-10-2941-2016, 2016
Short summary
Short summary
In the Alps, glacier cover, snow farming and technical snow production were introduced as adaptation measures to climate change one decade ago. Comparing elevation changes in areas with and without mass balance management in five ski resorts showed that locally up to 20 m of ice thickness was preserved compared to non-maintained areas. The method can be applied to maintainance of skiing infrastructure but has also some potential for melt management at high and dry glaciers.
Tobias Sauter and Stephan Peter Galos
The Cryosphere, 10, 2887–2905, https://doi.org/10.5194/tc-10-2887-2016, https://doi.org/10.5194/tc-10-2887-2016, 2016
Short summary
Short summary
The paper deals with the micrometeorological conditions on mountain glaciers. We use idealized large-eddy simulations to study the heat transport associated with the local wind systems and its impact on the energy exchange between atmosphere and glaciers. Our results demonstrate how the sensible heat flux variablility on glaciers is related to topographic effects and that the energy surplus is strong enough to significantly increase the local glacier melting rates.
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016, https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Short summary
Fourteen years of satellite observations are used to monitor the albedo of Brewster Glacier, New Zealand and estimate annual and seasonal balances. This confirms the governing role of the summer balance in the annual balance and allows the reconstruction of the annual balance to 1977 using a photographic record of the snowline. The longest mass balance record for a New Zealand glacier shows negative balances after 2008, yielding a loss of 35 % of the gain accumulated over the previous 30 years.
Joshua M. Maurer, Summer B. Rupper, and Joerg M. Schaefer
The Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016, https://doi.org/10.5194/tc-10-2203-2016, 2016
Short summary
Short summary
Here we utilize declassified spy satellite imagery to quantify ice volume loss of glaciers in the eastern Himalayas over approximately the last three decades. Clean-ice and debris-covered glaciers show similar magnitudes of ice loss, while calving glaciers are contributing a disproportionately large amount to total ice loss. Results highlight important physical processes affecting the ice mass budget and associated water resources in the Himalayas.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Cited articles
Becker, M. W., Bellin, A., Simoni, S., and Zanotti, F.: Ground Penetrating Radar profiling of bedrock at Careser glacier: 25 May, 2007. Technical report, Universitá degli studi di Trento – Dipartimento Ingegneria Civile e Ambientale, 8 pp., 2007.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, Hodder Education, London, 802 pp., 2010.
Carturan, L.: Climate change effects on the cryosphere and hydrology of a high-altitude watershed, PhD thesis, TeSAF – University of Padova, 187 pp., 2010.
Carturan, L. and Seppi, R.: Recent mass balance results and morphological evolution of Careser glacier (Central Alps), Geogr. Fis. Din. Quat., 30, 33–42, 2007.
Carturan, L., Dalla Fontana, G., and Cazorzi, F.: The mass balance of La Mare Glacier (Ortles-Cevedale, Italian Alps) from 2003 to 2008, Epitome, Proceedings of Geoitalia 2009 congress, FIST, Federazione Italiana di Scienze della Terra, 3, 298, 2009.
Carturan, L., Dalla Fontana, G., and Borga, M.: Estimation of winter precipitation in a high-altitude catchment of the Eastern Italian Alps: validation by means of glacier mass balance observations, Geogr. Fis. Din. Quat., 35, 37–48, 2012.
Carturan, L., Filippi, R., Seppi, R., Gabrielli, P., Notarnicola, C., Bertoldi, L., Paul, F., Rastner, P., Cazorzi, F., Dinale, R., and Dalla Fontana, G.: Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers, The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013, 2013.
CGI (Comitato Glaciologico Italiano): Reports of the glaciological surveys, Bollettino del Comitato Glaciologico Italiano, Series I and II, 1–25, 1914–1977.
CGI (Comitato Glaciologico Italiano): Reports of the glaciological surveys, Geogr. Fis. Din. Quat., 1–35, 1978–2012.
Cogley, J. G. and Adams, W.P.: Mass balance of glaciers other than the ice sheets, J. Glaciol., 44, 315–325, 1998.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R.J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011.
Desio, A.: I ghiacciai del Gruppo Ortles-Cevedale, Consiglio Nazionale delle Ricerche, Comitato Glaciologico Italiano, Milano, 875 pp., 1967.
Desio, A. and Pisa, V.: Relazione preliminare sullo studio idrologico-glaciologico del ghiacciaio del Careser (Gruppo Ortles-Cevedale). Ufficio Idrografico Magistrato alle Acque di Venezia, Pubbl. No. 132, Roma, 36 pp., 1934.
Döhler, K.: Gletscherbeobachtungen in der Ortler Gruppe im Sommer 1914. Zeitschr. f. Gletscherk., Bd. X (1916–1917), 119–120, Leipzig, 1917.
Elsberg, D. H., Harrison, W. D., Echelmeyer, K. A., and Krimmel, R. M.: Quantifying the effects of climate and surface change on glacier mass balance, J. Glaciol., 47, 649–658, 2001.
Fischer, A.: Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner, Global Planet. Change, 71, 13–26, 2010.
Fischer, A.: Comparison of direct and geodetic mass balances on a multi-annual time scale, The Cryosphere, 5, 107–124, https://doi.org/10.5194/tc-5-107-2011, 2011.
Forieri, A., Pettinicchio, P., Rossi, G., Tabacco, I., Tosi, N., Veronese, G., and Zanon, G.: Modelling the evolution of the Caresèr Glacier (Ortles Cevedale Group) in 1970–90, Eur. J. Env. Eng. Geophys., 3, 247–266, 1999.
Fountain, A. G., Hoffman, M. J., Granshaw, F. D., and Riedel, J.: The "benchmark glacier" concept – does it work? Lessons from the North Cascade Range, USA, Ann. Glaciol., 50, 163–168, 2009.
Frizsch, M.: Gletscherbeobachtungen in der Ortler Gruppe, Mitt. d. Deutsch. u. Oe. A. V., Bd. XXIV, 247–249 and 259–261, Wien, 1898.
Frizsch, M.: Zusammenstellung der von Bergführern eingesandten Berichte über Gletscherbeobachtungen in der Glockner- Venediger- und Ortler-Gruppe, Mitt. d. Deutsch. u. Oe. A. V., Bd. XXV, 31–33, Wien, 1899.
Frizsch, M.: Gletscherbeobachtungen im Sommer 1901, Mitt. d. Deutsch. u. Oe. A. V., Bd. XXVIII, 131–133, München-Wien, 1902.
Frizsch, M.: Gletscherbeobachtungen im Sommer 1902, Mitt. d. Deutsch. u. Oe. A. V., Bd. XXIX, 205–206, München-Wien, 1903.
Funk, M., Morelli, R., and Stahel, W.: Mass balance of Griesgletscher 1961–1994: different methods of determination, Z. Gletscherkd. Glazialgeol., 33, 41–56, 1997.
Gabrielli, P., Carturan, L., Gabrieli, J., Dinale, R., Krainer, K., Hausmann, H., Davis, M., Zagorodnov, V. S., Seppi, R., Barbante, C., Dalla Fontana, G., and Thompson, L. G.: Atmospheric warming threatens the untapped glacial archive of Ortles mountain, South Tyrol, J. Glaciol., 56, 843–853, 2010.
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325, https://doi.org/10.1038/ngeo1450, 2012.
GCOS (Global Climate Observing System): Implementation plan for the global observing system for climate in support of the UNFCCC, GCOS-92, Geneva, World Meteorological Organization (WMO TD 1219), 2004.
Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., and Dedieu, J. P.: Surface mass balance of glaciers in the French Alps: Distributed modelling and sensitivity to climate change, J. Glaciol., 51, 561–572, 2005.
Giada, M. and Zanon, G.: Sulla misura e sul comportamento delle precipitazioni ad alta quota, Memorie della Società Geografica Italiana, XXXIX, 129–146, 1985a.
Giada, M. and Zanon, G.: Modificazioni volumetriche sul Ghiacciaio del Caresèr (Alpi Centrali, Gruppo Ortles-Cevedale) tra il 1967 e il 1980. Geogr. Fis. Din. Quat., 8, 10–13, 1985b.
Giada, M. and Zanon, G.: Variazioni di livello e volumetriche sulla vedretta del Caresèr (Gruppo Ortles-Cevedale) tra il 1980 e il 1990, Geogr. Fis. Din. Quat., 14, 221–228, 1991.
Giada, M. and Zanon, G.: Caratteri delle modificazioni areali di livello e volumetriche per il ghiacciaio del Cereser (Alpi centrali, gruppo Ortles-Cevedale), 1990-1997 Proceedings of the 8th Italian Glaciological Meeting, Supplements of Geogr. Fis. Din. Quat., Vol. V, 85–88, 2001.
GNGFG-CNR (Gruppo Nazionale Geografia Fisica e Geomorfologia – Consiglio Nazionale delle Ricerche): Ricerche geomorfologiche nell'alta val di Peio (Gruppo del Cevedale), Geogr. Fis. Din. Quat., 9, 137–191, 1986.
Haeberli, W.: Glacier fluctuations and climate change detection – Operational elements of a worldwide monitoring strategy, World Meteo. Org. Bull., 44, 23–31, 1995.
Haeberli, W.: Glaciers and ice caps: historical background and strategies of worldwide monitoring, in: Mass balance of the cryosphere, edited by: Bamber, J. L. and Payne, A. J., Cambridge, Cambridge University Press, 559–578, 2004.
Haeberli, W.: Glacier Mass Balance, in: Encyclopedia of Snow, Ice and Glaciers edited by: Singh, V. P, Singh, P., and Haritashia, U., Encyclopedia of Earth Sciences Series, Springer, 399–408, 2011.
Haeberli, W., Cihlar, J., and Barry, R.: Glacier monitoring within the Global Climate Observing System. Ann. Glaciol., 31, 241–246, 2000.
Haeberli, W., Maisch, M., and Paul, F.: Mountain glaciers in global climate-related observation networks, WMO Bulletin, 51, 18–25, 2002.
Harrison, W. D., Raymond, C. F., Echelmeyer, K. A., and Krimmel, R. M.: A macroscopic approach to glacier dynamics, J. Glaciol., 49, 13–21, 2003.
Haug, T., Rolstad, C., Elvehøy, H., Jackson M., and Maalen-Johansen, I.: Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968–1985 and 1985–2002, Ann. Glaciol., 50, 119–125, 2009.
Hoelzle, M., Haeberli, W., Dischl, M., and Peschke, W.: Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36, 295–306, 2003.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (Eds.): Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 944 pp., 2001.
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass balance time series, Ann. Glaciol., 50, 198–206, 2009.
Huss, M., Hock, R., Bauder, A., and Funk, M.: Conventional versus reference-surface mass balance, J. Glaciol., 58, 278–286, 2012.
Jóhannesson, T., Raymond, C., and Waddington, E.: A simple method for determining the response time of glaciers, in: Glacier Fluctuations and Climatic Change, edited by: Oerlemans, J., Kluwer Academic Publishing, Dordrecht, 343–352, 1989.
Kaser, G., Fountain, A., and Jansson, P.: A Manual for Monitoring the Mass Balance of Mountain Glaciers, (IHP-VI, Technical Documents in Hydrology, No. 59), UNESCO, Paris, 107 pp., 2003.
Letréguilly, A. and Reynaud, L.: Space and time distribution of glacier mass-balance in the Northern Hemisphere, Arct. Alp. Res., 22, 43–50, 1990.
Lliboutry, L.: Traité de glaciologie, Tome II: Glaciers, Variations du Climat, Sols Gelés, Paris (Masson), 1965.
Martinelli, T., Cainelli, O., Bellin, A., Becker, M. W., Bal, G., and Godio, A.: Caratterizzazione del substrato roccioso del ghiacciaio del Careser. Technical report, Universitá degli studi di Trento – Dipartimento Ingegneria Civile e Ambientale, 32 pp., 2010.
Matthews, J. A. and Briffa, K. R.: The "Little Ice Age": reevaluation of an evolving concept, Geogr. Ann. A, 87A, 17–36, 2005.
Oerlemans, J.: Climate sensitivity of Franz Josef Glacier, New Zealand, as revealed by numerical modeling, Arct. Alp. Res., 29, 233–239, 1997.
Oerlemans, J.: Glaciers and climate change, Balkema Publishers, Lisse, 148 pp., 2001.
Oerlemans, J.: Estimating response times of Vadret da Morteratsch, Vadret da Palü, Briksdalsbreen and Nigardsbreen from their length records, J. Glaciol., 53, 357–362, 2007.
Østrem, G. and Brugman, M.: Glacier mass-balance measurements, a manual for field and office work, N.H.R.I. Science Report, 4, 224 pp., 1991.
Paul, F.: The influence of changes in glacier extent and surface elevation on modeled mass balance, The Cryosphere, 4, 569–581, https://doi.org/10.5194/tc-4-569-2010, 2010.
Paul, F., Kääb, A., and Haeberli, W.: Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies, Global Planet. Change, 56, 111–122, 2007.
Pecci, M., D'agata, C., and Smiraglia, C.: Ghiacciaio del Calderone (Apennines, Italy): the mass balance of a shrinking Mediterranean glacier, Geogr. Fis. Din. Quat., 31, 55–62, 2008.
Pelto, M. S.: Glacier annual balance measurement, forecasting and climate correlations, North Cascades, Washington 1984–2006, The Cryosphere, 2, 13–21, https://doi.org/10.5194/tc-2-13-2008, 2008.
Pelto, M. S.: Forecasting temperate alpine glacier survival from accumulation zone observations, The Cryosphere, 4, 67–75, https://doi.org/10.5194/tc-4-67-2010, 2010.
Pelto, M. S. and Hedlund, C.: The terminus behavior and response time of North Cascade glaciers, Washington, USA, J. Glaciol., 47, 497–506, 2001.
Pulejo, P.: Evoluzione dell'ambiente glaciale dell'alta val di Peio dalla metà del XIX secolo in base alla cartografia e agli studi glaciologici. Degree thesis, Falcoltà di Lettere e Filosofia, Università Cà Foscari di Venezia, 155 pp., 1998.
Raper, S. C. B. and Braithwaite, R. J.: Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry, The Cryosphere, 3, 183–194, https://doi.org/10.5194/tc-3-183-2009, 2009.
Rasmussen, L. A.: Altitude variation of glacier mass balance in Scandinavia, Geophys. Res. Lett., 31, L13401, https://doi.org/10.1029/2004GL020273, 2004.
Rasmussen, L. A. and Andreassen, L. M.: Seasonal mass balance gradients in. Norway, J. Glaciol., 51, 601–606, 2005.
Reishauer, H.: Revision der Gletschermarken im Ortler-Gebiete in der Jahren 1904 und 1905, Zeitschr. f. Gletscherk., Bd. II (1907–1908), 224–231, Berlin, 1908.
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway, J. Glaciol., 55, 666–680, 2009.
Schwarb, M.: The Alpine precipitation climate: evaluation of a high-resolution analysis scheme using comprehensive raingauge data. Diss. ETHZ 13'911, Zürcher Klimaschriften, Heft 80, Institut für Klimaforschung ETH, Verlag Institut für Klimaforschung ETH Zürich, 2000.
Small, E. E.: Hypsometric forcing of stagnant ice margins: Pleistocene valley glaciers, San Juan Mountains, Colorado, Geomorphology, 14, 109–121, 1995.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Thibert, E., Blanc, R., Vincent, C., and Eckert, N.: Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps, J. Glaciol., 54, 522–532, 2008.
Thibert, E., Eckert, N., and Vincent, C.: Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps), The Cryosphere, 7, 47–66, https://doi.org/10.5194/tc-7-47-2013, 2013.
WGMS (World Glacier Monitoring Service): World glacier inventory – Status 1988, edited by: Haeberli, W., Bösch, H., Scherler, K., Østrem, G., and Wallén, C. C., IAHS (ICSI) / UNEP / UNESCO, World Glacier Monitoring Service, Zurich, Switzerland, 458 pp., 1989.
WGMS (World Glacier Monitoring Service): Glacier Mass Balance Bulletin No. 9 (2006–2007), edited by: Haeberli, W., Gartner-Roer, I., Hoelzle, M., Paul, F., and Zemp, M., ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 96 pp., 2009.
WGMS (World Glacier Monitoring Service): Glacier Mass Balance Bulletin No. 11 (2008–2009), edited by: Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Hoelzle, M., Paul, F., and Haeberli, W., ICSU (WDS) / IUGG (IACS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service, Zurich, Switzerland, 102 pp., 2011.
WGMS (World Glacier Monitoring Service): Fluctuations of Glaciers 2005–2010 (Vol. X), edited by: Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., and Haeberli, W., ICSU (WDS) / IUGG (IACS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service, Zurich, Switzerland, 336 pp., 2012.
Zanon, G.: Venticinque anni di bilancio di massa del ghiacciaio del Careser, 1966–67/1990–91, Geogr. Fis. Din. Quat., 15, 215–220, 1992.
Zemp, M., Frauenfelder, R., Haeberli, W., and Hoelzle M.: Worldwide glacier mass balance measurements: General trends and first results of the extraordinary year 2003 in Central Europe, Mater. Glyatsiol. Issled., 99, 3–12, 2005.
Zemp, M., Paul, F., Hoelzle, M. and Haeberli, W.: Glacier fluctuations in the European Alps 1850–2000: an overview and spatio-temporal analysis of available data, in: The darkening peaks: Glacial retreat in scientific and social context, edited by: Orlove, B., Wiegandt, E., and Luckman, B., University of California Press, 152–167, 2008.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, 2009.
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013.