Research article
07 Nov 2012
Research article | 07 Nov 2012
Surge dynamics on Bering Glacier, Alaska, in 2008–2011
E. W. Burgess et al.
Related subject area
Spatial and temporal variations in glacier aerodynamic surface roughness during the melting season, as estimated at the August-one ice cap, Qilian mountains, China
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020,https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary
Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area)
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020,https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020,https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018,https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018,https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018,https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018,https://doi.org/10.5194/tc-12-1367-2018, 2018
Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018,https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
The European mountain cryosphere: a review of its current state, trends, and future challenges
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018,https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017,https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017,https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017,https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016,https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016,https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps
Roberto Sergio Azzoni, Antonella Senese, Andrea Zerboni, Maurizio Maugeri, Claudio Smiraglia, and Guglielmina Adele Diolaiuti
The Cryosphere, 10, 665–679, https://doi.org/10.5194/tc-10-665-2016,https://doi.org/10.5194/tc-10-665-2016, 2016
Short summary
Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry
K. E. Allstadt, D. E. Shean, A. Campbell, M. Fahnestock, and S. D. Malone
The Cryosphere, 9, 2219–2235, https://doi.org/10.5194/tc-9-2219-2015,https://doi.org/10.5194/tc-9-2219-2015, 2015
Short summary
Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015,https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015,https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015,https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography
M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova
The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014,https://doi.org/10.5194/tc-8-2367-2014, 2014
Short summary
Albedo over rough snow and ice surfaces
S. Lhermitte, J. Abermann, and C. Kinnard
The Cryosphere, 8, 1069–1086, https://doi.org/10.5194/tc-8-1069-2014,https://doi.org/10.5194/tc-8-1069-2014, 2014
Monitoring water accumulation in a glacier using magnetic resonance imaging
A. Legchenko, C. Vincent, J. M. Baltassat, J. F. Girard, E. Thibert, O. Gagliardini, M. Descloitres, A. Gilbert, S. Garambois, A. Chevalier, and H. Guyard
The Cryosphere, 8, 155–166, https://doi.org/10.5194/tc-8-155-2014,https://doi.org/10.5194/tc-8-155-2014, 2014
Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps)
L. Carturan, C. Baroni, M. Becker, A. Bellin, O. Cainelli, A. Carton, C. Casarotto, G. Dalla Fontana, A. Godio, T. Martinelli, M. C. Salvatore, and R. Seppi
The Cryosphere, 7, 1819–1838, https://doi.org/10.5194/tc-7-1819-2013,https://doi.org/10.5194/tc-7-1819-2013, 2013
Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers
L. Carturan, R. Filippi, R. Seppi, P. Gabrielli, C. Notarnicola, L. Bertoldi, F. Paul, P. Rastner, F. Cazorzi, R. Dinale, and G. Dalla Fontana
The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013,https://doi.org/10.5194/tc-7-1339-2013, 2013
Cited articles
Alaska Climatology: Alaska Climate Research Center, available at: http://climate.gi.alaska.edu/Climate/index.html, last access: 15 August 2012.
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., and Valentine, V. B.: Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level, Science, 297, 382–386, https://doi.org/10.1126/science.1072497, 2002.
Arendt, A., Echelmeyer, K., Harrison, W., Lingle, C., Zirnheld, S., Valentine, V., Ritchie, B., and Druckenmiller, M.: Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods, J. Geophys. Res., 111, F03019, https://doi.org/10.1029/2005JF000436, 2006.
Arendt, A. A., Luthcke, S. B., Larsen, C. F., Abdalati, W., Krabill, W. B., and Beedle, M. J.: Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St. Elias Mountains, Alaska, USA, using aircraft laser altimetry, J. Glaciol., 54, 778–787, https://doi.org/10.3189/002214308787780067, 2008.
Arendt, A., Bolch, T., Cogley, J. G., Gardner, A., Hagen, J.-O., Hock, R., Kaser, G., Pfeffer, W. T., Moholdt, G., Paul, F., Radić, V., Andreassen, L., Bajracharya, S., Beedle, M., Berthier, E., Bhambri, R., Bliss, A., Brown, I., Burgess, E., Burgess, D., Cawkwell, F., Chinn, T., Copland, L., Davies, B., de Angelis, H., Dolgova, E., Filbert, K., Forester, R., Fountain, A., Frey, H., Giffen, B., Glasser, N., Gurney, S., Hagg, W., Hall, D., Haritashya, U. K., Hartmann, G., Helm, C., Herreid, S., Howat, I., Kapustin, G., Khromova, T., Kienholz, C., Koenig, M., Kohler, J., Kriegel, D., Kutuzov, S., Lavrentiev, I., LeBris, R., Lund, J., Manley, W., Mayer, C., Miles, E., Li, X., Menounos, B., Mercer, A., Moelg, N., Mool, P., Nosenko, G., Negrete, A., Nuth, C., Pettersson, R., Racoviteanu, A., Ranzi, R., Rastner, P., Rau, F., Rich, J., Rott, H., Schneider, C., Seliverstov, Y., Sharp, M., Sigur{\dh}sson, O., Stokes, C., Wheate, R., Winsvold, S., Wolken, G., Wyatt, F., Zheltyhina, N.: Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines, Global Land Ice Measurements from Space, Boulder Colorado, USA, 2012.
Armstrong, R., Raup, B., Khalsa, S. J. S., Barry, R. G., Kargel, C., and Kieffer, H.: GLIMS glacier database, available at: http://www.glims.org (last access: 1 November 2012), 2005.
Beedle, M. J., Dyurgerov, M., Tangborn, W., Khalsa, S. J. S., Helm, C., Raup, B., Armstrong, R., and Barry, R. G.: Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska, The Cryosphere, 2, 33–51, https://doi.org/10.5194/tc-2-33-2008, 2008.
Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., and Rémy, F.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci., 3, 92–95, 2010.
Bindschadler, R.: A numerical model of temperate glacier flow applied to the quiescent phase of a surge-type glacier, J. Glaciol., 28, 239–265, 1982.
Bindschadler, R., Vornberger, P., Blankenship, D., Scambos, T., and Jacobel, R.: Surface velocity and mass balance of ice streams D and E, West Antarctica, J. Glaciol., 42, 461–475, 1996.
Bruhn, R. L., Pavlis, T. L., Plafker, G., and Serpa, L.: Deformation during terrane accretion in the Saint Elias orogen, Alaska, Bull. Geol. Soc. Am., 116, 771–787, 2004.
Bruhn, R. L., Sauber, J., Cotton, M. M., Pavlis, T. L., Burgess, E., Ruppert, N., Foster, R. R.: Plate Margin Deformation and Active Tectonics along the northern edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada, Geosphere, in press, 2012.
Conway, H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E., and Claus, P.: A low-frequency ice-penetrating radar system adapted for use from an airplane: Test results from Bering and Malaspina Glaciers, Alaska, USA, Ann. Glaciol., 50, 93–97, 2009.
Larsen, C.: Photography – Bering Glacier – 4 April 2011, available at: http://fairweather.alaska.edu/chris/images/Bering_2011.4.11/index.html, last access: 2 November 2012.
Dolgushin, L. D. and Osipova, G. B.: Balance of a surging glacier as the basis for forecasting its periodic advances, Mater. Glyatsiologicheskikh Issled. Khronica Obsuzhdeniya, 32, 260–265, 1978.
Echelmeyer, K. A., Harrison, W. D., Larsen, C. F., Sapiano, J., Mitchell, J. E., Demallie, J., Rabus, B., Adalgeirsdóttir, G., and Sombardier, L.: Airborne surface profiling of glaciers: A case-study in Alaska, J. Glaciol., 42, 538–547, 1996.
Eisen, O., Harrison, W. D., Raymond, C. F., Echelmeyer, K. A., Bender, G. A., and Gorda, J. L. D.: Variegated Glacier, Alaska, USA: a century of surges, J. Glaciol., 51, 399–406, https://doi.org/10.3189/172756505781829250, 2005.
Fatland, D. R. and Lingle, C. S.: InSAR observations of the 1993–95 Bering Glacier (Alaska, U. S. A.) surge and a surge hypothesis, J. Glaciol., 48, 439–451, https://doi.org/10.3189/172756502781831296, 2002.
Gray, A. L., Mattar, K. E., Vachon, P. W., Bindschadler, R., Jezek, K. C., Forster, R., and Crawford, J. P.: InSAR results from the RADARSAT Antarctic mapping mission data: estimation of glacier motion using a simple registration procedure, Int. Geosci. Remote Se., 3, 1638–1640, 1998.
Heinrichs, T. A., Mayo, L. R., Echelmeyer, K. A., and Harrison, W. D.: Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A, J. Glaciol., 42, 110–122, 1996.
Herzfeld, U. C. and Mayer, H.: Surge of Bering Glacier and Bagley Ice Field, Alaska: an up date to August 1995 and an interpretation of brittle defortnation patterns, J. Glaciol., 43, 427–434, 1997.
Kamb, B.: Glacier Surge Mechanism Based on Linked Cavity Configuration of the Basal Water Conduit System, J. Geophys. Res., 92, 9083–9100, https://doi.org/10.1029/JB092iB09p09083, 1987.
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M., and Pfeffer, T.: Glacier Surge Mechanism: 1982–1983 Surge of Variegated Glacier, Alaska, Science, 227, 469–479, https://doi.org/10.1126/science.227.4686.469, 1985.
Koenig, L., Martin, S., Studinger, M., and Sonntag, J.: Polar Airborne Observations Fill Gap in Satellite Data, EOS T. Am. Geophys. Un., 91, p. 333, https://doi.org/201010.1029/2010EO380002, 2010.
LeBlanc, L.: Icequakes and Ice Motion: A Time-Series Analysis of the Dynamics of the Bering Glacier, Alaska, M.S. thesis, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, 2009.
Maronna, R. A.: Robust Statistics: Theory and Methods, J. Wiley, Chichester, England, 2006.
Michel, R. and Rignot, E.: Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry, J. Glaciol., 45, 93–100, 1999.
Molnia, B.: Glaciers of North America – Glaciers of Alaska, in: Satellite image atlas of glaciers of the world, U.S. Geological Survey Professional Paper 1386-K, edited by: Williams, R. S. and Ferrigno, J. G., p. 525, 2008.
Molnia, B. and Angeli, K.: Comparison of the 2008–2011 and 1993–1995 Surges of Bering Glacier, Alaska, AGU Fall Meeting, San Francisco, CA, C11B-0675, 2011.
Molnia, B. and Post, A.: Holocene history of Bering Glacier, Alaska: a prelude to the 1993–1994 surge, Phys. Geogr., 16, 87–117, 1995.
Nye, J. F.: A method of determining the strain-rate tensor at the surface of a glacier, J. Glaciol., 3, 409–419, 1959.
Plafker, G.: Regional geology and petroleum potential of the northern Gulf of Alaska continental margin, in: Regional geology and petroleum potential of the northern Gulf of Alaska continental margin, edited by: Scholl, D. W., Grantz, A., and Vedder, J. G., 229–268, Circum-Pacific Council for Energy and Mineral Resources, Houston, TX, 1987.
Post, A.: Periodic surge origin of folded medial moraines on Bering piedmont glacier, Alaska, J. Glaciol., 11, 219–226, 1972.
Raymond, C. F.: How Do Glaciers Surge? A Review, J. Geophys. Res., 92, 9121–9134, 1987.
Röthlisberger, H.: Water pressure in intra- and subglacial channels, J. Glaciol., 11, 177–203, 1972.
Roush, J. J., Lingle, C. S., Guritz, R. M., Fatland, D. R., and Voronina, V. A.: Surge-front propagation and velocities during the early-199395 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery, Ann. Glaciol., 36, 37–44, https://doi.org/10.3189/172756403781816266, 2003.
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., and Werner, C. L.: Glacier motion estimation using SAR offset-tracking procedures, Geoscience and Remote Sensing, Transactions on IEEE, 40, 2384–2391, https://doi.org/10.1109/TGRS.2002.805079, 2002.
Turrin, J., Forster, R., Bruhn, R. L., and Sauber, J. M.: Velocity, slope change, and structural control of the 2008–2011 surge of Bering Glacier, Alaska, from a time-series of Landsat-7 ETM+ imagery, San Francisco, CA., C53B-0671, 2011.