Articles | Volume 19, issue 2
https://doi.org/10.5194/tc-19-793-2025
https://doi.org/10.5194/tc-19-793-2025
Brief communication
 | Highlight paper
 | 
21 Feb 2025
Brief communication | Highlight paper |  | 21 Feb 2025

Brief communication: Sea-level projections, adaptation planning, and actionable science

William H. Lipscomb, David Behar, and Monica Ainhorn Morrison

Related authors

Interactive coupling of a Greenland ice sheet model in NorESM2
Heiko Goelzer, Petra M. Langebroek, Andreas Born, Stefan Hofer, Konstanze Haubner, Michele Petrini, Gunter Leguy, William H. Lipscomb, and Katherine Thayer-Calder
Geosci. Model Dev., 18, 7853–7867, https://doi.org/10.5194/gmd-18-7853-2025,https://doi.org/10.5194/gmd-18-7853-2025, 2025
Short summary
Disentangling uncertainty in ISMIP6 Antarctic sub-shelf melting and 2300 sea level rise projections
Johanna Beckmann, Ronja Reese, Felicity S. McCormack, Sue Cook, Lawrence Bird, Dawid Gwyther, Daniel Richards, Matthias Scheiter, Yu Wang, Hélène Seroussi, Ayako Abe‐Ouchi, Torsten Albrecht, Jorge Alvarez‐Solas, Xylar S. Asay‐Davis, Jean‐Baptiste Barre, Constantijn J. Berends, Jorge Bernales, Javier Blasco, Justine Caillet, David M. Chandler, Violaine Coulon, Richard Cullather, Christophe Dumas, Benjamin K. Galton‐Fenzi, Julius Garbe, Fabien Gillet‐Chaulet, Rupert Gladstone, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, G. Hilmar Gudmundsson, Holly Kyeore Han, Trevor R. Hillebrand, Matthew J. Hoffman, Philippe Huybrechts, Nicolas C. Jourdain, Ann Kristin Klose, Petra M. Langebroek, Gunter R. Leguy, William H. Lipscomb, Daniel P. Lowry, Pierre Mathiot, Marisa Montoya, Mathieu Morlighem, Sophie Nowicki, Frank Pattyn, Antony J. Payne, Tyler Pelle, Aurélien Quiquet, Alexander Robinson, Leopekka Saraste, Erika G. Simon, Sainan Sun, Jake P. Twarog, Luke D. Trusel, Benoit Urruty, Jonas Van Breedam, Roderik S. W. van de Wal, Chen Zhao, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4069,https://doi.org/10.5194/egusphere-2025-4069, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A framework for three-dimensional dynamic modeling of mountain glaciers in the Community Ice Sheet Model (CISM v2.2)
Samar Minallah, William H. Lipscomb, Gunter Leguy, and Harry Zekollari
Geosci. Model Dev., 18, 5467–5486, https://doi.org/10.5194/gmd-18-5467-2025,https://doi.org/10.5194/gmd-18-5467-2025, 2025
Short summary
The effect of the present-day imbalance on schematic and climate forced simulations of the West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3380,https://doi.org/10.5194/egusphere-2025-3380, 2025
Short summary
Competing processes determine the long-term impact of basal friction parameterizations for Antarctic mass loss
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-441,https://doi.org/10.5194/egusphere-2025-441, 2025
Short summary

Cited articles

Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, https://doi.org/10.1038/NCLIMATE1778, 2013. a
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a, b, c
Bassis, J. N., Berg, B., Crawford, A. J., and Benn, D. I.: Transition to marine ice cliff instability controlled by ice thickness gradients and velocity, Science, 372, 1342–1344, https://doi.org/10.1126/science.abf6271, 2021. a
Behar, D.: Challenges and Opportunities in Adapting to Climate Change: Perspectives from Utilities, in: Proceedings of the First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change, 6–7 January 2009, EPA-600-R-09-010, U.S. Environmental Protection Agency, Washington, DC, 5–6, https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=203725 (last access: 5 February 2025), 2009. a
Boston Research Advisory Group: Climate Ready Boston: Climate Change and Sea Level Projections for Boston, https://www.boston.gov/sites/default/files/file/2023/03/2016_climate_ready_boston_report.pdf (last access: 21 October 2024), 2016. a
Download
Co-editor-in-chief
For most countries dealing with the consequences of sea-level rise, a constructive discussion about actionable science is critical. There is a need to strengthen the lines of evidence for sea-level projections and at the same time there is a strong need for practitioners to understand which science they should rely on to plan adaptation actions. This manuscript outlines when scientific results may be considered actionable and discusses the risks in using novel results to inform decision-making. The case study discussed in the manuscript is also valid for other climate-change-related fields.
Short summary
As communities try to adapt to climate change, they look for "actionable science" that can inform decision-making. There are risks in relying on novel results that are not yet accepted by the science community. We propose a practical criterion for determining which scientific claims are actionable. We show how premature acceptance of sea-level-rise predictions can lead to confusion and backtracking, and we suggest best practices for communication between scientists and adaptation planners.
Share