Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2559-2025
https://doi.org/10.5194/tc-19-2559-2025
Research article
 | 
17 Jul 2025
Research article |  | 17 Jul 2025

Detection and reconstruction of rock glacier kinematics over 24 years (2000–2024) from Landsat imagery

Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell

Related authors

Rock Glacier Inventories (RoGI) in 12 areas worldwide using a multi-operator consensus-based procedure
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-598,https://doi.org/10.5194/essd-2024-598, 2025
Revised manuscript accepted for ESSD
Short summary
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022,https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022,https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
DISTRIBUTION AND EVOLUTION OF ICE APRONS IN A CHANGING CLIMATE IN THE MONT-BLANC MASSIF (WESTERN EUROPEAN ALPS)
S. Kaushik, L. Ravanel, F. Magnin, Y. Yan, E. Trouve, and D. Cusicanqui
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 469–475, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-469-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-469-2021, 2021
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021,https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025,https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025,https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Retrieving frozen ground surface temperature under the snowpack in Arctic permafrost area from SMOS observations
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963,https://doi.org/10.5194/egusphere-2024-3963, 2025
Short summary
Multitemporal UAV lidar detects seasonal heave and subsidence on palsas
Cas Renette, Mats Olvmo, Sofia Thorsson, Björn Holmer, and Heather Reese
The Cryosphere, 18, 5465–5480, https://doi.org/10.5194/tc-18-5465-2024,https://doi.org/10.5194/tc-18-5465-2024, 2024
Short summary

Cited articles

Arenson, L., Colgan, W., and Marshall, H. P.: Chapter 2 - Physical, Thermal, and Mechanical Properties of Snow, Ice, and Permafrost, in: Snow and Ice-Related Hazards, Risks and Disasters, edited by: Shroder, J. F., Haeberli, W., and Whiteman, C., Academic Press, Boston, 35–75, https://doi.org/10.1016/B978-0-12-394849-6.00002-0, 2015. 
Ayoub, F., Leprince, S., Binet, R., Lewis, K. W., Aharonson, O., and Avouac, J. P.: Influence of camera distortions on satellite image registration and change detection applications: 2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings, 2008 IEEE International Geoscience and Remote Sensing Symposium – Proceedings, II1072–II1075, https://doi.org/10.1109/IGARSS.2008.4779184, 2008. 
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33° S): Rock Glaciers in the Dry Andes, Permafrost Periglac. Process., 21, 42–53, https://doi.org/10.1002/ppp.669, 2010. 
Azócar, G. F., Brenning, A., and Bodin, X.: Permafrost distribution modelling in the semi-arid Chilean Andes, The Cryosphere, 11, 877–890, https://doi.org/10.5194/tc-11-877-2017, 2017. 
Download
Short summary
This study presents a robust methodological approach to detect and analyse rock glacier kinematics using Landsat 7/Landsat 8 imagery. In the semiarid Andes, 382 landforms were monitored, showing an average velocity of 0.37 ± 0.07 m yr⁻¹ over 24 years, with rock glaciers moving 23 % faster. Results demonstrate the feasibility of using medium-resolution optical imagery, combined with radar interferometry, to monitor rock glacier kinematics with widely available satellite datasets.
Share