Articles | Volume 19, issue 6
https://doi.org/10.5194/tc-19-2045-2025
https://doi.org/10.5194/tc-19-2045-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

Grounded ridge detection and characterization along the Alaska Arctic coastline using ICESat-2 surface height retrievals

Kennedy A. Lange, Alice C. Bradley, Kyle Duncan, and Sinéad L. Farrell

Related authors

Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Implications of surface flooding on airborne estimates of snow depth on sea ice
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021,https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021,https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Survey on early career travel support shows geographic, career stage, and indigenous status inequality in access to polar science events
Alice Bradley, Juan Höfer, Valentina Savaglia, and Clare Eayrs
Adv. Geosci., 53, 73–85, https://doi.org/10.5194/adgeo-53-73-2020,https://doi.org/10.5194/adgeo-53-73-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary

Cited articles

Adams, B. and Observers of coastal Arctic Alaska: Local Observations from the Seasonal Ice Zone Observing Network (SIZONet) and Alaska Arctic Observatory and Knowledge Hub (AAOKH), Version 2., https://doi.org/10.7265/jhws-b380, 2022. a, b
Amante, C. J.: Estimating coastal digital elevation model uncertainty, J. Coast. Res., 34, 1382–1397, 2018. a
Anderson, D. L.: Growth Rate of Sea Ice, J. Glaciol., 3, 1170–1172, https://doi.org/10.3189/S0022143000017676, 1961. a, b
Barker, A. and Timco, G.: Maximum pile-up heights for grounded ice rubble, Cold Reg. Sci. Technol., 135, 62–75, 2017. a, b
Barnes, P. W., Reimnitz, E., and Fox, D.: Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska, J. Sediment. Res., 52, 493–502, 1982. a
Download
Short summary
Grounded sea ice ridges stabilize nearshore sea ice by anchoring it in the seafloor. In this study, we develop a method to identify grounded ridges in satellite data and measure the height, depth, distance from shore, and width of a thousand ridges across the Alaska Arctic, finding regional differences in these metrics across the coastline. This method lays the groundwork for a better understanding of nearshore ice stability, holding importance for Arctic community food security and safety. 
Share