Articles | Volume 18, issue 10
https://doi.org/10.5194/tc-18-4607-2024
https://doi.org/10.5194/tc-18-4607-2024
Research article
 | 
08 Oct 2024
Research article |  | 08 Oct 2024

Exploring the potential of forest snow modeling at the tree and snowpack layer scale

Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse

Related authors

High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374,https://doi.org/10.5194/essd-2024-374, 2024
Preprint under review for ESSD
Short summary
Regionally optimized high-resolution input datasets enhance the representation of snow cover in CLM5
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024,https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024,https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-81,https://doi.org/10.5194/hess-2024-81, 2024
Revised manuscript accepted for HESS
Short summary
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209,https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024,https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024,https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Analyzing the sensitivity of a blowing snow model (SnowPappus) to precipitation forcing, blowing snow, and spatial resolution
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024,https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming
Michael A. Rawlins and Ambarish V. Karmalkar
The Cryosphere, 18, 1033–1052, https://doi.org/10.5194/tc-18-1033-2024,https://doi.org/10.5194/tc-18-1033-2024, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: Application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-285,https://doi.org/10.5194/egusphere-2024-285, 2024
Short summary

Cited articles

Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-Moreno, J. I., Fiddes, J., Essery, R., and Gascoin, S.: The Multiple Snow Data Assimilation System (MuSA v1.0), Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, 2022. 
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006. 
Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., and Schneider, D.: Snowmelt rate dictates streamflow: Snowmelt Rate Dictates Streamflow, Geophys. Res. Lett., 43, 8006–8016, https://doi.org/10.1002/2016GL069690, 2016. 
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. 
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model, Cold Reg. Sci. Technol., 23, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. 
Download
Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time because different processes prevail at different locations in the forest.