Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4517-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-4517-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unprecedented 21st century glacier loss on Mt. Hood, Oregon, USA
Nicolas Bakken-French
CORRESPONDING AUTHOR
Oregon Glaciers Institute, Corvallis, OR 97330, USA
Stephen J. Boyer
Oregon Glaciers Institute, Corvallis, OR 97330, USA
B. Clay Southworth
Oregon Glaciers Institute, Corvallis, OR 97330, USA
Megan Thayne
Oregon Glaciers Institute, Corvallis, OR 97330, USA
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
Anders E. Carlson
Oregon Glaciers Institute, Corvallis, OR 97330, USA
Related authors
No articles found.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025, https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples, and ground-penetrating radar) to assess the suitability for subglacial drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak (74.86°S, 99.77°W).
Jonathan R. Adams, Dylan H. Rood, Klaus Wilcken, Stephen J. Roberts, and Joanne S. Johnson
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-34, https://doi.org/10.5194/gchron-2024-34, 2024
Revised manuscript under review for GChron
Short summary
Short summary
Ice sheet mass loss is adding to sea-level rise, and is expected to increase, but by how much and how fast remains uncertain. Isotopes produced in rock at the Earth’s surface provide records of past ice sheet thinning which help predict future change but are more effective if they are precise enough to determine past changes to the nearest thousand years. The precision of carbon-14, an isotope which is guaranteed to record past change since the last ice age, can be improved.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Jonathan R. Adams, Joanne S. Johnson, Stephen J. Roberts, Philippa J. Mason, Keir A. Nichols, Ryan A. Venturelli, Klaus Wilcken, Greg Balco, Brent Goehring, Brenda Hall, John Woodward, and Dylan H. Rood
The Cryosphere, 16, 4887–4905, https://doi.org/10.5194/tc-16-4887-2022, https://doi.org/10.5194/tc-16-4887-2022, 2022
Short summary
Short summary
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide historical context for ongoing ice loss in West Antarctica, including constraints on likely future ice sheet behaviour in response to climatic warming. We present evidence from rare isotopes measured in rocks collected from an outcrop next to Pope Glacier. These data suggest that Pope Glacier thinned faster and sooner after the last ice age than previously thought.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Cited articles
Beason, S. R., Kenyon, T. R., Jost, R. P., and Walker, L. J.: Changes in glacier extents and estimated changes in glacial volume at Mount Rainier National Park, Washington, USA from 1896 to 2021, National Resource Report NPS/MORA/NRR-2023/2524, 2023.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, 2011.
Columbia Gorge Fruit Growers: Crops Information, http://www.cgfg.org/information/crops-information (last access: 3 April 2024), 2024.
Dodge, N. A.: The Eliot Glacier: New Methods and Some Interpretations, Mazama Bulletin, 53, 25–33, 1971.
Dodge, N. A.: Eliot Glacier: Net Mass Balance, Mazama Bulletin, 69, 52–55, 1987.
Driedger, C. L. and Kennard, P. M.: Glacier volume estimation on Cascade volcanoes: An analysis and comparison with other methods, Ann. Glaciol., 8, 59–64, 1986a.
Driedger, C. L. and Kennard, P. M.: Ice Volumes on Cascade Volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta, U.S. Geological Survey Professional Paper 1365, 1986b.
Ellinger, J. R.: The Changing Glaciers of Mt. Hood, Oregon and Mt. Rainier, Washington: Implications for Periglacial Debris Flows, MSc Thesis, Oregon State University, 2010.
Fagre, D. B., McKeon, L. A., Dick, K. A., and Fountain, A. G.: Glacier margin time series (1966, 1998, 2005, 2015) of the named glaciers of Glacier National Park, MT, USA, U.S. Geological Survey data release, https://doi.org/10.5066/F7P26WB1, 2017.
Farmers Irrigation District, https://www.fidhr.org/index.php/en/about-us/hydroelectric (last access: 3 April 2024), 2024.
Florentine, C., Sass, L., McNeil, C., Baker, E., and O'Neel, S.: How to handle glacier area change in geodetic mass balance, J. Glaciol., jog.2023.86, https://doi.org/jog.2023.86, 2024.
Fountain, A. G., Glenn, B., and Basagic, H. J.: The geography of glaciers and perennial snowfields in the American West, Arct. Antarct. Alp. Res., 49, 391–410, 2017.
Fountain, A. G., Gray, C., Glenn, B., Menounos, B., Pflug, J., and Riedel, J. L.: Glaciers of the Olympic Mountains, Washington – The Past and Future 100 Years, J. Geophys. Res., 127, e2022JF006670, https://doi.org/10.1029/2022JF006670, 2022.
Fountain, A. G., Glenn, B., and Mcneil, C.: Inventory of glaciers and perennial snowfields of the conterminous USA, Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, 2023.
Frans, C., Istanbulluoglu, E., Lettenmaier, D. P., Clarke, G., Bohn, T. J., and Stumbaugh, M.: Implications of decadal to century scale glacio-hydrological change for water resources of the Hood River basin, OR, USA, Hydrol. Process., 30, 4314–4329, 2016.
Frans, C., Istanbulluoglu, E., Lettenmaier, D. P., Fountain, A. G., and Riedel, J.: Glacier Recession and the Response of Summer Streamflow in the Pacific Northwest United States, 1960–2099, Water Res. Res., 54, 6202–6225, 2018.
Garwood, J. M., Fountain, A. G., Lindke, K. T., van Hattem, M. G., and Basagic, H. J.: 20th Century Retreat and Recent Drought Accelerated Extinction of Mountain Glaciers and Perennial Snowfields in the Trinity Alps, California, Northwest Sci., 94, 44–61, 2020.
GLIMS and NSIDC: Global Land Ice Measurements from Space Glacier Database, Compiled and Made Available by the International GLIMS Community and the National Snow and Ice Data Center [data set], https://doi.org/10.7265/N5V98602, 2005, updated 2023.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps, Ann. Glaciol., 21, 206–212, 1995.
Handewith Jr., H.: Recent Glacier Variations on Mt. Hood, Mazama Bulletin, 41, 23–28, 1959.
Heeter, K. J., Harley, G. L., Abatzoglou, J. T., Anchukaitis, K. J., Cook, E. R., Coulthard, B. L., Dye, L. A., and Homfeld, I. K.: Unprecedented 21st century heat across the Pacific Northwest of North America, npj Clim. Atmos. Sci., 6, 5, https://doi.org/10.1038/s41612-023-00340-3, 2023.
Hoelzle, M., Haeberli, W., Dischl, M., and Peschke, W.: Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36, 295–306, 2023.
Howcutt, S., Spagnolo, M., Rea, B. R., Jaszewski, J., Barr, I., Coppola, D., De Siena, L., Girona, T., Gomez-Patron, A., Mullan, D., and Pritchard, M. E.: Icy Thermometers: Quantifying the impact of volcanic heat on glacier elevation, Geology, 51, 1143–1147, 2023.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, 2021.
Jackson, K. M., and Fountain, A. G.: Spatial and morphological change on Eliot Glacier, Mount Hood, Oregon, USA, Ann. Glaciol., 46, 222–226, 2007.
Leigh, J. R., Stokes, C. R., Carr, J. R., Evans, I. S., Andreassen, L. M., and Evans, D. J. A.: Identifying and mapping very small (<0.5 km2) mountain glaciers on coarse to high-resolution imagery, J. Glaciol., 65, 873–888, 2019.
Leonard, K. C. and Fountain, A. G.: Map-based methods for estimating glacier equilibrium-line altitudes, J. Glaciol., 49, 329–336, 2003.
Lillquist, K. and Walker, K.: Historical Glacier and Climate Fluctuations at Mount Hood, Oregon, Arct. Antarct. Alp. Res., 38, 399–412, 2006.
Lundstrom, S. C., McCafferty, A. E., and Coe, J. A.: Photogrammetric analysis of 1984-89 surface altitude change of the partially debris-covered Eliot Glacier, Mount Hood, Oregon, U.S.A., Ann. Glaciol., 17, 167–170, 1993.
Marvel, K., Cook, B. I., Bonfils, C. J. W., Durack, P. J., Smerdon, J. E., and Williams, A. P.: Twentieth-century hydroclimate changes. Consistent with human influences, Nature, 569, 59–65, 2019.
Marzeion, B., Cogely, J. G., Richter, K., and Parkes, D.: Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345, 919–921, 2014.
Mason, R. S.: Recent Survey of Coe and Eliot Glaciers, Mazama Bulletin, 36, 37–39, 1954.
Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., Pelto, B., Tennant, C., Shea, J., Noh, M.-J., Brun, F., and Dehecq, A.: Heterogeneous Changes in Western North American Glaciers Linked to Decadal Variability in Zonal Wind Strength, Geophys. Res. Lett., 46, 200–209, 2019.
Miller, J. B., Frisbee, M. D., Hamilton, T. L., and Murugapiran, S. K.: Recharge from glacial meltwater is critical for alpine springs and their microbiomes, Environ. Res. Lett., 16, 064012, https://doi.org/10.1088/1748-9326/abf06b, 2021.
Mote, P. W., Rupp, D. E., Li, S., Sharp, D. J., Otto, F., Uhe, P. F., Xiao, M., Lettenmaier, D. P., Cullen, H., and Allen, M. R.: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States, Geophys. Res. Lett., 43, 10980–10988, 2016.
Müller, F., Caflisch, T., and Müller, G.: Instructions for Compilation and Assemblage of Data for a World Glacier Inventory, Temporary Technical Secretariat for World Glacier Inventory, International Commission on Snow and Ice, https://wgms.ch/downloads/Mueller_etal_UNESCO_1977.pdf (last access: 10 July 2024), 1977.
Nolin, A. W., Phillippe, J., Jefferson, A., and Lewis, S. L.: Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: Implications for water resources, Water Res. Res., 46, W12509, https://doi.org/10.1029/2009WR008968, 2010.
O'Connor, J. E.: Our Vanishing Glaciers, Oregon Historical Quarterly, 114, 402–427, 2013.
O'Neil, D.: Changes at Elevation, 1859 Oregon's Magazine, 77, 60–67, 2023.
O'Neel, S., McNeil, C., Sass, L. C., Florentine, C., Baker, E. H., Peitzsch, E., McGrath, D., Fountain, A. G., and Fagre, D.: Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into climate forcing of glacier mass balance, J. Glaciol., 65, 850–866, 2019.
Oregon Glaciers Institute: 2023 Mt. Hood Glacier Margins for “Unprecedented Twenty-First Century Glacier Loss on Mt. Hood, Oregon, U.S.A.”, Zenodo [data set], https://doi.org/10.5281/zenodo.13356244, 2024.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines derived from remote-sensing data, Ann. Glaciol., 54, 171–182, 2013.
Pelto, M.: Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources, Springer Briefs in Climate Studies, https://doi.org/10.1007/978-3-319-22605-7, 2016.
Pelto, M. and Brown, C.: Mass balance loss of Mount Baker, Washington glaciers 1990–2010, Hydrol. Process., 26, 2601–2607, 2012.
Pelto, M. S.: How Unusual Was 2015 in the 1984-2015 Period of the North Cascade Glacier Annual Mass Balance?, Water, 10, w10050543, https://doi.org/10.3390/w10050543, 2018.
Pelto, M. S.: Alpine Glaciers, State of the Climate in 2022, 2. Global Climate, B. Am. Meteorol. Soc., 104, Si-S501, https://doi.org/10.1175/2023BAMSStateoftheClimate.1, 2023.
Pelto, M. S. and Hedlund, C.: Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A., J. Glaciol., 47, 497–506, 2001.
Pelto, M. S., Dryak, M., Pelto, J., Matthews, T., and Perry, L. B.: Contributions of Glacier Runoff during Heat Waves in the Nooksack River Basin USA, Water, 14, w14071145, https://doi.org/10.3390/w14071145, 2022.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, 2014.
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Anslow, F. S., Seneviratne, S. I., Vautard, R., Coumou, D., Ebi, K. L., Arrighi, J., Singh, R., van Aalst, M., Pereira Marghidan, C., Wehner, M., Yang, W., Li, S., Schumacher, D. L., Hauser, M., Bonnet, R., Luu, L. N., Lehner, F., Gillett, N., Tradowsky, J. S., Vecchi, G. A., Rodell, C., Stull, R. B., Howard, R., and Otto, F. E. L.: Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021, Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, 2022.
Phillips, K.: Recent Changes in Hood's Glaciers, Mazama Bulletin, 17 45–50, 1935.
Phillips, K.: Our Vanishing Glaciers, Mazama Bulletin, 20, 24–41, 1938.
Pitman, K. J., Moore, J. W., Sloat, M. R., Beaudreau, A. H., Bidlack, A. L., Brenner, R. E., Hood, E. W., Pess, G. R., Mantua, N. J., Milner, A. M., Radić, V., Reeves, G. H., Schindler, D. E., and Whited, D. C.: Glacier Retreat and Pacific Salmon, BioScience, 70, 220–236, 2020.
Robel, A. A., Ultee, L., Ranganathan, M., and Nash, M.: For whom and by whom is glaciology?, J. Glaciol., in press, https://doi.org/10.1017/jog.2024.29, 2024.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as categorical evidence of regional climate change, Nat. Geosci., 10, 95–99, 2017.
Roe, G. H., Christian, J. E., and Marzeion, B.: On the attribution of industrial-era glacier mass loss to anthropogenic climate change, The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, 2021.
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science, 379, 78–83, 2023.
Thieman, C., Danielsen, A., Salminen, E., Berge, H., and Ross, K.: Watershed 2040, Hood River Basin Partnership Strategic Action Plan, Oregon Watershed Enhancement Board, 2021.
Thomspon, V., Kennedy-Asser, A. T., Vosper, E., Lo, Y. T. E., Huntingford, C., Andrews, O., Collins, M., Hegerl, G. C., and Mitchell, D.: The 2021 western North American heat wave among the most extreme events ever recorded globally, Sci. Adv., 8, eabm6860, https://doi.org/10.1126/sciadv.abm6860, 2022.
U.S. Bureau of Reclamation: Reclamation Managing Water in the West: Hood River Basin Study, https://www.usbr.gov/pn/studies/hoodriver/index.html (last access: 5 January 2024), 2015.
U.S. Geological Survey: Eruption History of Mount Hood, Oregon, https://www.usgs.gov/volcanoes/mount-hood/science/eruption-history-mount-hood-oregon (last access: 28 January 2024), 2023.
U.S. National Oceanic and Atmospheric Administration: Climate at a Glance, https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/ (last access: 8 January 2024), 2024.
U.S. National Resources Conservation Service: Oregon, Water, About Us, https://www.nrcs.usda.gov/conservation-basics/conservation-by-state/oregon/oregon-snow-survey/about-us (last access: 7 April 2024), 2024.
World Glacier Monitoring Service: Reference glacier data, https://wgms.ch/products_ref_glaciers/ (last access: 4 April 2024), 2022.
Zemp, M., Frey, H., Gärtnew-Roer, I., Nussbaumer, S. U., Helzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurdsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 745–762, 2015.
Short summary
Repeat photography, field mapping, and remote sensing find that glaciers on Mt. Hood, Oregon, have lost about 25 % of their area in the first 2 decades of the 21st century and 17 % of their area in the last 7–8 years. The 21st century recession rate is more than 3 times faster than the 20th century average and 1.9 times faster than the fastest period of retreat within the 20th century. This unprecedented retreat corresponds to regional summer warming of 1.7–1.8°C relative to the early 1900s.
Repeat photography, field mapping, and remote sensing find that glaciers on Mt. Hood, Oregon,...