Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1621-2024
https://doi.org/10.5194/tc-18-1621-2024
Research article
 | 
08 Apr 2024
Research article |  | 08 Apr 2024

MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model

Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi

Related authors

The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024,https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024,https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024,https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary

Cited articles

Boulze, H., Korosov, A., and Brajard, J.: Classification of sea ice types in Sentinel-1 SAR data using convolutional neural networks, Remote Sens., 12, 2165, https://doi.org/10.3390/rs12132165, 2020. a
Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Brandt Kreiner, M.: AI4Arctic Sea Ice Challenge Dataset, DTU [code and data set], https://doi.org/10.11583/DTU.c.6244065.v2, 2022. a, b, c
Chen, S., Shokr, M., Li, X., Ye, Y., Zhang, Z., Hui, F., and Cheng, X.: MYI floes identification based on the texture and shape feature from dual-polarized Sentinel-1 imagery, Remote Sens., 12, 3221, 2020. a
Chen, X., Scott, K. A., Jiang, M., Fang, Y., Xu, L., and Clausi, D. A.: Sea Ice Classification With Dual-Polarized SAR Imagery: A Hierarchical Pipeline, in: Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., Waikoloa, USA, January, 2023, 224–232, 2023a. a
Chen, X., Valencia, R., Soleymani, A., and Scott, K. A.: Predicting Sea Ice Concentration With Uncertainty Quantification Using Passive Microwave and Reanalysis Data: A Case Study in Baffin Bay, IEEE Trans. Geosci. Remote Sens., 61, 1–13, https://doi.org/10.1109/TGRS.2023.3250164, 2023b. a, b
Download
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.