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Abstract. The AutoICE challenge, organized by multiple na-
tional and international agencies, seeks to advance the de-
velopment of near-real-time sea ice products with improved
spatial resolution, broader spatial and temporal coverage, and
enhanced consistency. In this paper, we present a detailed
description of our solutions and experimental results for the
challenge. We have implemented an automated sea ice map-
ping pipeline based on a multi-task U-Net architecture, capa-
ble of predicting sea ice concentration (SIC), stage of devel-
opment (SOD), and floe size (FLOE). The AI4Arctic dataset,
which includes synthetic aperture radar (SAR) imagery, an-
cillary data, and ice-chart-derived label maps, is utilized for
model training and evaluation. Among the submissions from
over 30 teams worldwide, our team achieved the highest
combined score of 86.3 %, as well as the highest scores on
SIC (92.0 %) and SOD (88.6 %). Notably, the result analysis
and ablation studies demonstrate that instead of model archi-
tecture design, a collection of strategies/techniques we em-
ployed led to substantial enhancement in accuracy, efficiency,
and robustness within the realm of deep-learning-based sea
ice mapping. Those techniques include input SAR variable
downscaling, input feature selection, spatial–temporal en-
coding, and the choice of loss functions. By highlighting
the various techniques employed and their impacts, we aim
to underscore the scientific advancements achieved in our
methodology.

1 Introduction

Automated sea ice mapping using satellite data plays a vi-
tal role in understanding and monitoring the Earth’s polar
regions. Sea ice, a critical component of the cryosphere, un-
dergoes significant spatial and temporal variations, impacting
climate, ecosystems, and human activities. Satellite-based
automated mapping techniques offer a unique advantage in
providing comprehensive and frequent coverage over vast
and remote areas. By employing advanced algorithms and
machine learning (ML) approaches, these methods enable
the efficient detection and characterization of different sea
ice parameters (Lyu et al., 2022b). Accurate and timely sea
ice mapping aids in climate modeling, facilitating climate
change assessments, supporting operational activities such as
navigation and resource management (Li et al., 2022), and
enhancing our understanding of the intricate dynamics be-
tween the atmosphere, ocean, and ice-covered regions (Mah-
mud et al., 2022). The continuous advancements in auto-
mated sea ice mapping techniques using satellite data of-
fer valuable insights into this fragile environment and aid in
making informed decisions for sustainable development and
environmental stewardship.

Deep learning (DL) has emerged as a powerful tool for
sea ice parameter estimation from satellite data, especially
dual-polarized synthetic aperture radar (SAR) imagery, rev-
olutionizing the field with its wide-ranging applications and
improved performance compared to traditional algorithms or
conventional ML methods. DL-based models have demon-
strated exceptional capabilities in accurately estimating cru-
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cial sea ice parameters such as sea ice concentration (SIC)
(Wang et al., 2016, 2017; Cooke and Scott, 2019; Radhakr-
ishnan et al., 2021; De Gelis et al., 2021; Stokholm et al.,
2022; Malmgren-Hansen et al., 2020), stage of development
(SOD) (Jiang et al., 2022; Lyu et al., 2022a; Chen et al.,
2023a; Song et al., 2021; Khaleghian et al., 2021a; Liu et al.,
2021a; Khaleghian et al., 2021b; Kruk et al., 2020; Boulze
et al., 2020; Guo et al., 2023; Y. Zhang et al., 2021b; T. Zhang
et al., 2021a; Kortum et al., 2022), and floe size (Chen et al.,
2020; Nagi et al., 2021). These models leverage the ability
of deep neural networks to automatically learn complex fea-
tures and patterns from large volumes of data, enabling more
robust and precise parameter estimation.

However, it is important to acknowledge potential areas
for improvements of previous proposed DL-based methods.
First, many existing models focus on estimating a specific
parameter, which do not address the comprehensive char-
acterization of sea ice in operational use. Second, a signif-
icant number of studies rely on data from a single sensor. Al-
though this simplifies operational aspects and can enable the
investigation of extracting its maximum value, it might lead
to potential ambiguities and limitations in information inte-
gration. For example, although SAR images are capable of
showing the spatial patterns formed by sea ice in high resolu-
tion, its backscatter intensities do not always distinguish be-
tween open sea in windy conditions and various ice surfaces
(Malmgren-Hansen et al., 2020). In contrast, brightness tem-
perature maps collected by radiometers such as the Advanced
Microwave Scanning Radiometer 2 (AMSR2) satellite sen-
sor can distinguish well between ice and open water but with
coarse spatial resolution. Recent studies have implemented
ML and DL-based methods for retrieving SIC from bright-
ness temperature data and achieved promising results (Chi
et al., 2019; Soleymani and Scott, 2021; Chen et al., 2023b).
Third, due to the challenges in obtaining labeled samples for
training, DL-based models for sea ice often suffer from lim-
ited volume of datasets, which can impact their generaliza-
tion capabilities. Addressing these limitations is crucial to
further enhance the effectiveness and applicability of DL-
based sea ice parameter estimation methods.

Therefore, to address these challenges in automated sea ice
mapping, the ESA (European Space Agency), DMI (Danish
Meteorological Institute), the Technical University of Den-
mark (DTU), and NERSC (the Nansen Environmental and
Remote Sensing Center) collaborated to create a sea ice chal-
lenge called AutoICE (Stokholm et al., 2023a, c). The goal
of the challenge is to invite participants worldwide to derive
more accurate and robust AI-based solutions of automated
retrieval of multiple sea ice parameters, specifically, sea ice
concentration (the percentage ratio of sea ice to open water,
abbreviated as SIC), stage of development (the type of sea
ice and its thickness, abbreviated as SOD), and floe size (the
size and continuity of sea ice pieces, abbreviated as FLOE).
A large volume of multi-source satellite and auxiliary data
named AI4Arctic Sea Ice Challenge Dataset (Buus-Hinkler

et al., 2022) are provided for the training and evaluation of
the derived models.

In this paper, we present our methodology and correspond-
ing outcomes that resulted in achieving first place in the
challenge. Following the Introduction, Sect. 2 provides an
overview of the AI4Arctic dataset used in this work. The
methodology for the retrieval of sea ice parameters based
on a multi-task U-Net, along with a collection of strategies
employed for model performance improvement (e.g., SAR
scene downscaling, input variable selection, spatial–temporal
encoding, loss function selection), is illustrated extensively
in Sect. 3. Experimental results with ablation studies are an-
alyzed and discussed in Sect. 4. Finally, conclusions along
with future research are summarized in Sect. 5.

2 Data overview

The Ai4Arctic dataset consists of 533 netCDF files, includ-
ing 513 training files and 20 test files. Each training file con-
tains dual-polarized Sentinel-1 Extra Wide (EW) swath im-
ages, AMSR2 passive microwave radiometer measurements,
numerical weather prediction (NWP) parameters from ERA5
reanalysis dataset, and ice charts that follow the World Mete-
orological Organization (WMO) code for sea ice classes pro-
vided by either the Greenland Ice Service or the Canadian
Ice Service. The 20 test files have the same parameters as the
training files, except for the sea ice chart (label) data. There
are two versions of the dataset available: a raw version and a
ready-to-train version. The ready-to-train version undergoes
additional processing steps to prepare it for deep-learning al-
gorithms. To focus on model development and skip the ini-
tial preparation steps, we adopt the ready-to-train version to
train our models. This version converts the original ice chart
shapefile format into the netCDF format.

Each polygon in the ice chart is represented by an ID num-
ber and a table containing the ice chart variables for the poly-
gon in the associated netCDF file. The SIC in each polygon
represents the ratio of sea ice to open water in a given area,
divided into 11 classes with 10 % increments, ranging from
0 % (open water) to 100 % (fully covered sea ice). In addition
to total SIC, each polygon contains partial sea ice concentra-
tions, associated with SOD and FLOE, which sum up to the
total SIC. The partial concentrations are normalized by the
total concentration to determine whether a partial concentra-
tion is dominant in each polygon. Dominant parameters are
identified based on a threshold of 65 %. Therefore, a large
portion of polygons do not have a dominant SOD or FLOE
and are masked out from the labeling of SOD and FLOE.
The SOD serves as an indicator of the sea ice type, which
can be interpreted as a proxy for its thickness and ease of
traversal. It consists of five classes: 0 represents open water,
1 is for new ice, 2 for young ice, 3 for thin first-year ice, 4
for thick first-year ice, and 5 for old ice (older than 1 year).
The FLOE characterizes the size and continuity of sea ice
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Table 1. The metrics for evaluating the three sea ice parameters and
their weights in the final score specified by the competition.

Sea ice parameter Metric Weight in
(%) total score

SIC (sea ice concentration) R2 2/5
SOD (stage of development) F1 2/5
FLOE (floe size) F1 1/5

floes, and it is defined by six classes: 0 for open water, 1 for
cake ice, 2 for small floe, 3 for medium floe, 4 for big floe, 5
for vast floe, and 6 for bergs, which include various forms of
icebergs and glacier ice. In addition, SAR scenes are down-
sampled to 80 m pixel spacing (around 5000× 5000 pixels)
for ease of use and to help reduce barrier to entry. The pixel
values in the scenes are normalized within the [−1,1] range,
and statistical information and class bins are provided. NaN
values in SAR images are replaced with 2, and polygon ice
charts are assigned a value of 255 to represent non-data or
masked pixels. A detailed description of the dataset can be
found in the manual provided by Buus-Hinkler et al. (2022).
To evaluate the model performance numerically, SIC results
are evaluated by calculating the R2 coefficient, while SOD
and FLOE maps are both evaluated using the F1 score. The
three sea ice parameter scores will be combined into one sin-
gle final score as defined in the weighting scheme shown in
Table 1.

Using ice charts as ground truths enables the classifier to
extract the three sea ice parameters mentioned above at a re-
gional level. Although pixel-based labels produced from the
ice charts are provided in the ready-to-train version of the
AI4Arctic dataset, they are generated based on a thresholding
approach and cannot tell us about the locations of different
ice types/floe sizes at SAR sensor resolution. That being said,
the extraction of the sea ice parameters mentioned above at
SAR sensor resolution is out of the scope of classification in
this research. Besides, some other ice characteristics, such as
thickness and drift, are also outside the scope of this research
due to a lack of such information in the ice charts.

3 Methodology

3.1 Network design and loss function selection

The network designed in this research is based on the ar-
chitecture of a U-Net (Ronneberger et al., 2015) due to the
following reasons. Characterized by the U-shaped structure,
the network is able to capture both high-level contextual in-
formation and fine-grained details. Besides, the incorpora-
tion of skip connections facilitates the reuse of feature maps,
addressing spatial information preservation and the vanish-
ing gradient problem. Moreover, U-Net’s demonstrated ef-
ficacy, particularly in scenarios with limited annotated data

like sea ice mapping, underscores its ability to learn effec-
tively from small datasets and generalize to new, challeng-
ing data environments. U-Net has shown success in many
recent research studies concerning sea ice mapping (Rad-
hakrishnan et al., 2021; Stokholm et al., 2022; Kucik and
Stokholm, 2023; Nagi et al., 2021; Ren et al., 2021; Huang
et al., 2021; Stokholm et al., 2023b). For example, in a re-
cent study by Kucik and Stokholm (2023), a U-Net archi-
tecture was trained on the AI4Arctic Sea Ice Dataset version
2 (ASID-v2) (Saldo et al., 2021) to accurately retrieve SIC
with different loss functions for performance comparison.
Building upon this success, we extend the model to estimate
three sea ice parameters concurrently. Our multi-task U-Net
consists of four encoder–decoder blocks, with the first two
blocks having 32 filters and the remaining blocks having 64
filters (as shown in Fig. 1). Alternative configurations, such
as adding more blocks or increasing the number of filters, as
well as employing state-of-the-art DL-based models for im-
age segmentation such as the Swin transformer (Liu et al.,
2021b), were explored. However, none of these approaches
surpassed the performance of our current model.

To predict stage of development (SOD) and floe size
(FLOE), we utilize the output feature maps from the final
decoder and feed them into separate 1× 1 convolution lay-
ers. Each convolution layer has a number of filters equal to
the number of classes, enabling the generation of pixel-based
classification results through segmentation. Regarding SIC
estimation, as it can be treated as either a classification or
a regression problem, we investigate both convolution and
regression layers, employing different loss functions (e.g.,
mean squared error loss and cross-entropy loss) to compare
their effectiveness.

3.2 Input SAR variable downscaling

Despite the resolution of the SAR imagery that is well suited
for SAR sea ice monitoring, the polygon egg code data are
derived from the knowledge of ice analysts who have to pro-
duce charts in low resolution due to time constraints. There-
fore, to generate predictions consistent with the label maps, it
is advantageous for input SAR image patches to encompass
a large receptive field, which is achieved through the follow-
ing operations. Initially, the dual-polarized SAR images, dis-
tance maps (DMs), and corresponding ice-chart-derived la-
bel maps are downsampled by a certain ratio (10 in the pro-
posed model). During the training process, patches of size
256× 256 are randomly extracted from the downsampled
SAR images. As the AMSR2 and ERA5 inputs have been re-
sampled to the Sentinel-1 geometry, their corresponding data
points within the geographical areas covered by these patches
are also interpolated to the size of 256×256. This downscal-
ing operation has also been implemented in previous work
(Liu et al., 2021a) concerning sea ice classification to avoid
the appearance of scalloping and interscan banding artifacts
in classification results.
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Figure 1. The structure of the proposed multi-task U-Net-based model with output layers in yellow.

After downscaling, data augmentation operations listed in
Table 3 are applied to the extracted patches (with a proba-
bility of 0.5 for each operation) to enhance the model’s gen-
eralization ability. During the validation and testing phases,
the complete SAR scenes and DMs are downscaled, com-
bined with other upsampled data inputs, and then fed into the
trained model. The outputs are subsequently interpolated to
match the original size of the SAR data and ice charts for
evaluation purposes.

3.3 Ancillary data input selection

To select suitable inputs for training the model, we conduct
experiments using various combinations of data inputs. Ta-
ble 2 presents the combination of data inputs that yield the
best performance. For the AMSR2 data, frequencies of 18.7
and 36.5 GHz are chosen due to their higher spatial reso-
lution in comparison to lower-frequency channels, as well
as their reduced sensitivity to atmospheric water vapor and
cloud liquid water when compared to the 89 GHz channels
(Minnett et al., 2019; Chen et al., 2023b). All ERA5 inputs in
the AI4Arctic dataset are included, except for the skin tem-
perature, which exhibits a high correlation with the 2 m air
temperature and does not significantly improve overall accu-
racy. Detailed results using different combinations of input
channels will be demonstrated and discussed in Sect. 4. The
auxiliary data are brought up to input patch dimensions and
added as channels in this research. Although it is also feasible

to add them in the bottleneck, adding them as input channels
facilitates us to analyze the effect of choosing different data
inputs on model performance. Besides, it enables the con-
volutional neural network model to extract pixel-based non-
linear features at the very beginning. Nevertheless, in future
works it would be interesting to compare the current channel
adding approach vs. adding them in the bottleneck.

3.4 Spatial–temporal encoding

In operational sea ice mapping, ice experts not only rely on
satellite data analysis but also utilize their domain knowl-
edge, such as understanding typical ice conditions in specific
regions during certain months in previous years. Addition-
ally, SAR scenes captured in close proximity and similar time
periods tend to exhibit comparable ice conditions. As the DL-
based models proposed in this study lack access to such do-
main knowledge, we incorporate spatial and temporal infor-
mation of each scene into the input channels, as illustrated in
the last row of Table 2. Specifically, the latitude and longi-
tude coordinates of the 21× 21 Sentinel-1 SAR geographic
grid points provided in the dataset are interpolated to match
the size of the input SAR image. The time information of
each pixel corresponds to the acquisition month (represented
by enumeration, e.g., “01” for January) of the respective SAR
scene. The incorporation of spatial and temporal information
as data inputs originates from a previous work concerning the
sea ice thickness estimation with Google Earth Engine and
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Table 2. The combination of data inputs that produces the highest combined score using the proposed model.

Variable abbreviation Variable description Total number
of channels

HH, HV Dual-pol SAR scene 2

AMSR2 subset Dual-pol AMSR2 brightness temperature data in 18.7 and
36.5 GHz

4

ERA5 subset 10 m wind speed, 2 m air temperature, total column water vapor,
total column cloud liquid water

5

Location, time Latitude/longitude of each pixel and scene acquisition month 3

Sentinel-1 Ground Range Detected (GRD) data (Shamshiri
et al., 2022). The reason to discretize time information in-
stead of using continuous values (i.e., values specific to day)
is that since the ice climatology is similar within 1 month,
adopting continuous values might not improve model per-
formance significantly. Besides, the imbalanced data distri-
bution between different dates might lead to overfitting. In
contrast, the data volume available for each month is rela-
tively balanced. In future works, when the next version of
the dataset is released (with around 16 times more data), it
would be interesting to adopt the continuous approach for
comparison. The effectiveness of spatial–temporal encoding
in enhancing accuracy will be demonstrated in subsequent
ablation studies.

3.5 Model training and implementation

The specifications of model training are detailed in Ta-
ble 3, encompassing the combination of hyperparameters
that yields the highest validation accuracy. Cosine anneal-
ing (Loshchilov and Hutter, 2016) is employed as our learn-
ing rate schedule, initially utilizing a large learning rate that
gradually decreases following the cosine function to reach a
minimum value, before rapidly increasing again (every 20
epochs in our model). This approach allows the model to
navigate different regions of the loss landscape, potentially
avoiding suboptimal local minima and converging to a favor-
able solution. To ensure sufficient exposure per data sample
during training, each epoch comprises 500 iterations, with
a batch of patches randomly extracted from training scenes
during each iteration. Through exploring various combina-
tions of loss functions, we observe that employing mean
square error (MSE) loss for SIC and cross entropy (CE) loss
for SOD and FLOE produces the highest testing accuracy.
Specifically, the SIC retrieval is treated as a regression task,
with a regression layer added before the SIC output in the
model. Considering that the magnitude of MSE loss is con-
siderably higher than that of CE loss, we assign a larger
weight value (determined empirically) to the CE losses when
calculating the total loss. This weight assignment facilitates
the convergence of the three scores, as outlined in Table 3.

To validate the generalization capability of the model, for
each experiment 20 SAR scenes from the training data are
randomly selected as the validation set. Besides, to prevent
the influence of randomness in parameters initialization and
training, we train a total of 20 networks for each config-
uration and obtain the mean and variation of accuracy for
more trustworthy performance evaluation. At the conclusion
of each epoch, a combined score is calculated from the val-
idation set, utilizing the metrics outlined in Table 1. If the
score obtained in the current epoch surpasses all previous
epoch scores, the model parameters are updated and saved.
The final saved model is subsequently employed to generate
predictions for the testing data submissions.

All experiments were conducted on the Narval cluster of
Compute Canada, Canada’s national high-performance com-
puting system. The experiments utilized an NVIDIA A100-
SXM4-40GB GPU with 128 GB of RAM memory, employ-
ing the PyTorch 1.12 library. It takes an average of about
3.5 h to train the proposed model.

4 Experimental results

Out of numerous submissions on the leaderboard, we
achieved the highest combined score of approximately
86.3 %, as well as the highest SIC and SOD scores. As the
ice-chart-derived labels for the testing data were released
subsequent to the conclusion of the competition, we con-
ducted additional model retraining using diverse configura-
tions to obtain more comprehensive statistical outcomes for
detailed analysis.

The statistical results obtained from model validation and
testing are summarized in Table 4. Different configurations
of trained models are represented by distinct model numbers
(from Model 1 to Model 9), as specified in Table 4. Model
1 corresponds to the full model with settings described in
Sect. 3 and Table 3. The remaining models serve as abla-
tion studies to validate the effectiveness of the tricks we ap-
plied, with modifications detailed in Table 4. In the context
of our study, conducting ablation studies on different data
inputs enables a nuanced examination of their individual ef-
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Table 3. Specifications of training the proposed model with the highest combined score, including hyperparameter values, learning algo-
rithms, and loss functions.

Optimizer Stochastic gradient descent with momentum (SGDM)

Learning rate 0.001
Weight decay 0.01
Scheduler Cosine annealing
Batch size 16
Number of iterations per epoch 500
Total epoch 300
Number of epochs for the first restart 20
Downscaling ratio 10
Data augmentation Rotation, flip, random scale, CutMix
Patch size 256
Loss functions Mean square error loss for SIC, cross entropy loss for SOD and FLOE
Total loss calculation SIC× 1+SOD× 3+FLOE× 3
Number of validation scenes 20

Table 4. The average default scores for SIC, SOD, and FLOE (i.e., R2, F1, F1) obtained from models with different configurations. The
average combined scores and the associated standard deviations are also calculated. Model 1 (full model) is developed using the specifications
introduced in Tables 2 and 3. Compared to Model 1, Models 2–7 change the combinations of data inputs, Model 8 changes the loss function
for SIC, and Model 9 splits the decoder into three separate parts for the three parameters. N/A means no modifications.

Model Modifications compared to Model 1 Mean validation accuracy (%) Mean testing accuracy (%)
number

Combined Standard SIC SOD FLOE Combined Standard SIC SOD FLOE
score deviation score deviation

1 N/A (full model) 91.6 2.2 93.9 92.2 85.7 86.5 1.2 91.7 87.2 73.7
2 Remove SAR downscaling 85.6 2.5 88.9 86.1 78.1 79.7 1.4 84.4 80.7 68.4
3 Remove all data inputs except HH, HV 87.9 2.6 91.1 86.8 83.5 78.6 1.4 84.8 75.1 73.1
4 Remove AMSR2 data inputs 91.3 2.6 93.1 92.6 85.2 82.2 0.7 85.3 84.4 71.5
5 Remove ERA5 data inputs 91.7 2.4 93.6 92.6 86.3 85.2 0.6 90.4 86.5 72.0
6 Remove spatial–temporal encoding 88.7 2.1 92.9 86.8 83.9 82.5 0.8 91.1 78.1 73.8
7 Add all available data inputs not used in Model 1 91.5 2.3 93.6 91.8 86.6 86.5 0.6 91.3 88.7 73.3
8 Replace MSE loss with CE loss for SIC 90.7 2.3 91.4 92.9 85.0 83.5 1.2 86.7 85.8 72.7
9 Change the shared decoder to separate decoders 91.7 2.1 93.4 92.2 87.2 87.3 0.7 91.7 88.2 76.4

fects on the model’s ability to accurately predict sea ice char-
acteristics. This scientific approach aids in unraveling the in-
tricate relationships between input features and model out-
comes, guiding the optimization of model architectures and
data preprocessing techniques for improved performance and
interpretability. Each score in a certain model corresponds to
the average score of the 20 networks trained with the same
configuration. The relatively large standard deviation (SD)
values of the combined scores in validation are caused by
the randomness in validation scene selection. In contrast, the
SDs of combined scores in testing are much smaller (around
1 %). Through comparison, the capability of those strategies
in enhancing model performance is validated, as illustrated
below.

– Model 1 (full model) vs. Model 2 (no downscaling).
Downsampling the SAR data inputs significantly im-
proves the mapping accuracy (Model 1 vs. Model 2),
with improvements of 6.8 % in average testing com-
bined score, 7.3 % in SIC, 6.5 % in SOD, and 5.3 % in

FLOE. Furthermore, this downsampling enhancement
also leads to a substantial increase in computational ef-
ficiency. Training the full model takes approximately
3.5 h while producing a map using the forward model
for a SAR scene only requires an average of around 2 s.
In contrast, without downsampling, the average training
time is approximately 15 times longer. Various down-
sampling ratios were tested, and a value of 10 yielded
one of the best results along with high efficiency.

– Model 1 (full model) vs. Models 3, 4, 5 (removing cer-
tain features). The inclusion of multi-source input chan-
nels is essential, as demonstrated by the comparison be-
tween Model 1 and Model 3. Using only SAR data in-
puts results in lower SIC and SOD scores by 6.9 % and
12.1 %, respectively. Although the removal of AMSR2
(Model 4) or ERA5 (Model 5) data inputs does not
affect validation scores significantly, a drop in testing
accuracy can be observed. This is particularly evident
in the model without AMSR2 inputs, where the aver-
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Figure 2. Sea ice mapping results obtained from a SAR scene (ID: 20180707T113313_cis) in the testing data using models trained with
different configurations indicated by experiment numbers on the left. The ice-chart-derived labels are displayed in the last row for comparison.
Areas that are land or without labels are masked in white.

age SIC and SOD testing scores decrease by 6.4 % and
2.8 % compared to the full model. Thus, the inclusion
of brightness temperature data plays a vital role in en-
hancing model accuracy.

– Model 1 (full model) vs. Models 6 (no spatial–temporal
encoding). The effectiveness of spatial–temporal encod-
ing in improving accuracy, particularly the SOD score,
is evident in the comparison between Models 1 and 6.
This is likely because the model in Model 1 can learn
the distribution of dominant ice types in different Arc-
tic regions during different months based on the train-

ing data, resulting in a 9.1 % improvement in average
SOD score during testing. The inclusion of temporal
and spatial information signifies the integration of sea
ice climatology knowledge into the classification pro-
cess. While this enhancement demonstrates improved
model performance on recent data, it is essential to ac-
knowledge the inherent limitations of relying solely on
climatological information. The dynamic nature of the
Arctic, undergoing continuous changes, emphasizes the
continued reliance on observations from diverse sen-
sors, such as SAR and passive microwave, ensuring that
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Figure 3. Sea ice mapping results obtained from a SAR scene (ID: 20211212T211242_dmi) in the testing data using models trained with
different configurations indicated by experiment numbers on the left. The ice-chart-derived labels are displayed in the last row for comparison.
Areas that are land or without labels are masked in white.

satellite data occupy a predominant role in the input
channels for robust sea ice mapping.

– Model 1 (full model) vs. Models 7 (using all available
data inputs). Compared to the model utilizing all avail-
able data as inputs (Model 7), the full model with fea-
ture selection (selecting a subset of AMSR2 and ERA5
data) achieves nearly the same accuracy while improv-
ing efficiency.

– Model 1 (MSE loss for SIC) vs. Models 8 (cross-entropy
loss). Adopting MSE loss for SIC, as opposed to CE
loss (Model 8), increases the average SIC testing score
significantly by 5.0 % and improves the average testing
combined score by 3.0 %.

– Model 1 (shared decoder) vs. Model 9 (separate de-
coders). Despite improvements in SIC and SOD scores,
the FLOE scores remain relatively low, with a signifi-
cant gap between validation and testing accuracy. After
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Figure 4. The confusion matrices of SOD (a) and FLOE (b) testing results.

Figure 5. The distribution of training samples for each class in the three parameters (SIC on the a, SOD in the b, and FLOE on the c). The
bars of some categories may be invisible due to very low percentages (e.g., 0.43 % for 10 % SIC, 0.48 % for cake ice, and 0.17 % for bergs
in FLOE).

exploring numerous configurations, we found that only
downscaling and separating the decoders for the three
parameters (Model 9) might enhance the FLOE score.
Visually, it is challenging to distinguish patterns of dif-
ferent floe sizes from SAR imagery. The mapping re-
sults of FLOE will be further discussed in the visual
analysis below.

In addition to numerical results, visual interpretation is es-
sential for analysis. Sea ice mapping results from two exam-
ple SAR scenes in the testing data which were obtained using
models with different configurations are presented in Figs. 2
and 3. Figure 2 illustrates that implementing input downscal-
ing (including Model 1 and Model 8) enhances the consis-
tency between the ice–water boundaries in the label maps and

the model predictions. With a larger receptive field, contex-
tual information is captured by the model, leading to spatially
smoothed predictions. Conversely, without downscaling, the
extracted features only contain local intensity information,
limiting the model’s ability to capture the presence of ice in
surrounding areas, as demonstrated in the row corresponding
to Model 2. Although models with larger patch sizes (e.g.,
512, 768) have been tried out, we find that these models per-
form much worse than a patch size of 256. This could be
due to a consequence of utilizing a model with an insuffi-
cient receptive field for the patch size, which could be an area
for further improvements to the model in future works. Var-
ious input scales have also been implemented in a previous
work (Stokholm et al., 2022) concerning sea ice concentra-
tion estimation. Furthermore, while choosing CE loss for SIC
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yields lower accuracy than MSE loss, the predictions consist
of larger polygons that visually align more closely with the
SIC label map, as seen in Model 8. This finding is consistent
with the observations in Kucik and Stokholm (2023).

Furthermore, the effectiveness of spatial–temporal encod-
ing in improving SOD prediction accuracy can be observed
by comparing Model 1 and Model 6 in Fig. 3. In Model
6, where spatial–temporal encoding is not applied, a large
area labeled young ice is misclassified as thick first-year
ice (FYI). The model without AMSR2 inputs (Model 4)
also misclassifies a relatively large area as thin FYI. De-
spite achieving relatively high SOD accuracy, there are some
classes with significant misclassification rates. For instance,
as shown in the confusion matrices in Fig. 4, the classifica-
tion accuracies for new ice and thin FYI are only 19 % and
31 %, respectively. Misclassifications between ice types with
neighboring thickness are also prevalent. For example, 31 %
of old ice samples are misclassified as thick FYI. These is-
sues may be attributed to various factors, such as the highly
imbalanced distribution of samples among ice types. As de-
picted in Fig. 5, new ice and thin FYI have the most and
second least samples in the training data (comprising only
around 2 % of the total). Additionally, the labeling method
of SOD and FLOE in the ready-to-train dataset might con-
tribute to these challenges. Although most polygons in ice
charts contain multiple ice types and floe sizes, they are la-
beled with only the dominant classes due to a lack of pixel-
based labels, leading to inevitable labeling errors. During the
competition, we attempted several strategies to address the
issue of sample imbalance, such as implementing focal loss
(Lin et al., 2017). However, none of these approaches have
significantly improved the accuracy of the minority classes
so far.

5 Conclusions

In this paper, we present our MMSeaIce pipeline, which con-
sists of a multi-task U-Net for automated sea ice param-
eter retrieval from the ready-to-train version. In particular,
we implemented several tricks to improve model accuracy
and efficiency. The techniques behind those tricks include in-
put downscaling, feature selection, incorporating spatial and
temporal information, and loss function design. First, to en-
able our model to learn contextual information within a large
receptive field, we initially apply a downscaling operation to
the SAR data inputs. This enhances the consistency between
model predictions and ice-chart-derived labels, resulting in
a remarkable improvement of 6.8 % in the combined score
and significant enhancement in computation speed. Then,
we conducted ablation studies to investigate the impact of
different data inputs on model performance. These studies
demonstrate the necessity of including brightness tempera-
ture data, which leads to a 4.3 % improvement in the aver-
age combined score, as well as the importance of incorpo-

rating spatial–temporal information, which contributes to a
4.0 % improvement in the combined score. Additionally, we
show that other modifications to the model, such as applying
the MSE loss in SIC retrieval during training and employing
separate decoders for the three parameters, also improve the
overall performance. The best model we developed achieves
an average combined score of 87.3 % on the testing dataset,
with average individual scores of 91.7 %, 88.2 %, and 76.4 %
for SIC, SOD, and FLOE, respectively.

Despite our success in the competition, there are still sev-
eral areas that require further investigation to derive robust
and accurate automated sea ice maps with high resolution.
For instance, it is crucial to propose a new labeling method
that adequately addresses polygons with mixed ice types or
floe sizes. Furthermore, with the upcoming release of an up-
dated AI4Arctic dataset containing a significantly larger vol-
ume of data, we recommend retraining our full model to im-
prove the predictive accuracy of the minority classes. Addi-
tionally, considering the spatial and temporal variation of sea
ice in SAR imagery, training models specific to certain re-
gions or seasons, particularly the melting season, would be a
preferable approach for enhancing performance.
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