Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1215-2024
https://doi.org/10.5194/tc-18-1215-2024
Research article
 | 
12 Mar 2024
Research article |  | 12 Mar 2024

Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model

Chao-Yuan Yang, Jiping Liu, and Dake Chen

Related authors

Precession driven low-latitude hydrological cycle paced by shifting perihelion
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2778,https://doi.org/10.5194/egusphere-2024-2778, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022,https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022,https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024,https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary

Cited articles

Asplin, M. G., Scharien, R., Else, B., Howell, S., Barber, D. G., Papakyriakou, T., and Prinsenberg, S.: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes, J. Geophys. Res.-Oceans, 119, 2327–2343, https://doi.org/10.1002/2013JC009557, 2014. 
Bai, Q. and Bai, Y.: 7 – Hydrodynamics around Pipes, Subsea Pipeline Design, Analysis, and Installation, Gulf Professional Publishing, 153–170, https://doi.org/10.1016/B978-0-12-386888-6.00007-9, 2014. 
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020. 
Bateson, A. W., Feltham, D. L., Schröder, D., Wang, Y., Hwang, B., Ridley, J. K., and Aksenov, Y.: Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity, The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, 2022. 
Battjes, J. A. and Janssen, J. P. F. M.: Energy loss and set-up due to breaking of random waves, Coastal Engineering Proceedings, 1, 32, https://doi.org/10.9753/icce.v16.32, 1978. 
Download
Short summary
We present a new atmosphere–ocean–wave–sea ice coupled model to study the influences of ocean waves on Arctic sea ice simulation. Our results show (1) smaller ice-floe size with wave breaking increases ice melt, (2) the responses in the atmosphere and ocean to smaller floe size partially reduce the effect of the enhanced ice melt, (3) the limited oceanic energy is a strong constraint for ice melt enhancement, and (4) ocean waves can indirectly affect sea ice through the atmosphere and the ocean.