Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4797-2023
https://doi.org/10.5194/tc-17-4797-2023
Research article
 | 
15 Nov 2023
Research article |  | 15 Nov 2023

The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws

Christian Schoof

Related authors

The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023,https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Channelized, distributed, and disconnected: spatial structure and temporal evolution of the subglacial drainage under a valley glacier in the Yukon
Camilo Andrés Rada Giacaman and Christian Schoof
The Cryosphere, 17, 761–787, https://doi.org/10.5194/tc-17-761-2023,https://doi.org/10.5194/tc-17-761-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Glacier Hydrology
Hydrological response of Andean catchments to recent glacier mass loss
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024,https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Characterizing sub-glacial hydrology using radar simulations
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024,https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024,https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024,https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
A conceptual model for glacial lake bathymetric distribution
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023,https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary

Cited articles

Andrews, L., Catania, G., Hoffman, M., Gulley, J., Lüthi, M., Ryser, C., Hawley, R., and Neumann, T.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, 2014. a
de Diego, G. G., Farrell, P. E., and Hewitt, I. J.: Numerical approximation of viscous contact problems applied to glacial sliding, J. Fluid Mech., 938, 21, https://doi.org/10.1017/jfm.2022.178, 2022. a, b, c, d, e
de Diego, G. G., Farrell, P. E., and Hewitt, I. J.: On the Finite Element Approximation of a Semicoercive Stokes Variational Inequality Arising in Glaciology, SIAM J. Numer. Anal., 61, 1–25, https://doi.org/10.1137/21M1437640, 2023. a, b, c, d
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, P. Roy. Soc. A, 471, 20140907, https://doi.org/10.1098/rspa.2014.0907, 2015. a
Fontelos, M. and Muñoz, A.: A free boundary problem in glaciology: the motion of grounding lines, Interface. Free Bound., 9, 67–93, 2007. a
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is hydraulically connected (how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.