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Abstract. Models of subglacial drainage and of cavity for-
mation generally assume that the glacier bed is pervasively
hydraulically connected. A growing body of field observa-
tions indicates that this assumption is frequently violated in
practice. In this paper, I use an extension of existing models
of steady-state cavitation to study the formation of hydrauli-
cally isolated, uncavitated, low-pressure regions of the bed,
which would become flooded if they had access to the sub-
glacial drainage system. I also study their natural counterpart,
hydraulically isolated cavities that would drain if they had
access to the subglacial drainage system. I show that connec-
tions to the drainage system are made at two different sets of
critical effective pressure, a lower one at which uncavitated
low-pressure regions connect to the drainage system and a
higher one at which isolated cavities do the same. I also show
that the extent of cavitation, determined by the history of con-
nections made at the bed, has a dominant effect on basal drag
while remaining outside the realm of previously employed
basal friction laws: changes in basal effective pressure alone
may have a minor effect on basal drag until a connection be-
tween a cavity and an uncavitated low-pressure region of the
bed is made, at which point a drastic and irreversible drop in
drag occurs. These results point to the need to expand basal
friction and drainage models to include a description of basal
connectivity.

1 Introduction

Subglacial drainage is often assumed to occur in part through
a “distributed” drainage system: connected conduits that are
not arborescent in their geometry (Fountain and Walder,
1998) and therefore do not localize drainage into a few large

channels (Hewitt, 2010; Schoof et al., 2012; Hewitt, 2013;
Werder et al., 2013; Rada and Schoof, 2018; Flowers, 2015).
A frequently used paradigm for a distributed drainage model
is that of linked cavities (Lliboutry, 1968; Kamb, 1987;
Fowler, 1987): localized areas of ice–bed separation in the
lee of bed bumps.

Large-scale models for subglacial drainage systems typ-
ically assume that the bed as a whole always remains hy-
draulically connected. Existing process-scale models for the
evolution of subglacial cavities generally make the same as-
sumption. In large-scale drainage models, cavities are repre-
sented by a water sheet thickness: a cavity depth averaged
over a representative small area of the bed (that is, an area
of the bed that is much larger than an individual cavity but
much smaller than the glacier as a whole). The assumption
of a connected bed here simply means that water can flow as
soon as the sheet thickness exceeds zero (e.g. Werder et al.,
2013; Sommers et al., 2018). As a result, local variations in
water pressure at the scale of individual cavities are small,
since they would otherwise lead to excessive water fluxes,
and water pressure is a well-defined, smoothly varying vari-
able in the large-scale model.

In process-scale models, hydraulic connectedness typi-
cally occurs through the bed itself: the bed is highly per-
meable. Water sourced from an ambient drainage system at
some given water pressure can force its way between the ice
and bed as soon as compressive normal stress at the base of
the ice drops to the water pressure in the ambient drainage
system, causing a cavity to form (Schoof, 2005; Gagliardini
et al., 2007; Helanow et al., 2020, 2021; Stubblefield et al.,
2021; de Diego et al., 2022, 2023).

These assumptions are at odds with a growing set of
observations (Hodge, 1979; Murray and Clarke, 1995;
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Andrews et al., 2014; Lefeuvre et al., 2015; Rada and
Schoof, 2018) indicating that hydraulic connections at the
glacier bed are often patchy and evolve in time: while the
bed itself may be somewhat permeable, that permeability is
too low to allow significant water transport on the timescales
over which the drainage system evolves. On these timescales,
water must then flow predominantly along the ice–bed inter-
face, and the topology of the conduit network present there
(consisting of subglacial cavities and other forms of void
space like R-channels) may not provide a connection to all
parts of the bed.

Recent work in large-scale drainage modelling has at-
tempted to address this issue (Hoffman et al., 2016; Rada and
Schoof, 2018), albeit in fairly crude form: for instance, one
possibility is to assume that water can only flow when sheet
thickness exceeds a critical value. The aim of the present
work is to study the evolution of cavities in more detail for
an effectively impermeable bed at the process scale to bet-
ter understand how an ambient active drainage system can
access other parts of the bed through the evolution of basal
cavities. By contrast with most studies of subglacial cavity
formation, my focus is mostly on the evolution of subglacial
connectivity rather than on the computation of a sliding law.
As a by-product, I also show that connectivity plays a major
role in controlling friction at the glacier bed.

If only part of the glacier bed has access to the ambient
drainage system, then isolated, uncavitated, low-pressure re-
gions can form elsewhere, at normal stresses that would lead
to ice–bed separation if water from the ambient drainage sys-
tem had access. Conversely, these distant parts of the glacier
bed can become flooded with water when connected cavities
grow at low effective pressure. If the effective pressure in the
drainage system increases again after that flooding, the inter-
vening connections can become closed, leaving isolated cavi-
ties of fixed volume. These isolated cavities will generally be
at different effective pressures than the connected drainage
system.

In the present work, I have used a modified mathematical
model for cavity formation to explore the physics involved.
The basic physics of ice flow over an undulating bed, allow-
ing for the possibility of ice–bed separation as water forces
its way between the two, are the same as in existing models
for subglacial cavity formation. However, only a pre-defined,
highly permeable part of the bed, denoted by P , is assumed
to be directly connected to the ambient drainage system:
as in the existing models of de Diego et al. (2022, 2023),
Gagliardini et al. (2007), Helanow et al. (2020, 2021), Schoof
(2005), and Stubblefield et al. (2021), water is assumed to
force its way between the ice and bed if compressive nor-
mal stress on P drops to the value of the water pressure in
the ambient drainage system. The remainder of the bed is as-
sumed to be completely impermeable. Water can access these
other parts of the bed interface (outside of P ) only if there
is a hydraulic connection to P along the ice–bed interface.
Moreover, if water has previously accessed some imperme-

able part of the bed and the hydraulic connection has subse-
quently been closed, then an isolated cavity is formed. The
water pressure in that isolated cavity can differ from the wa-
ter pressure in the ambient drainage system, but the volume
of the cavity will remain fixed.

The model comes in two flavours: first, a two-dimensional,
purely viscous flow model for the ice assumes that the cavity
roof is in steady state and that water pressure in each sepa-
rate cavity is spatially uniform. Where a cavity is in contact
with the permeable part P of the bed, water pressure equals
that in the ambient drainage system, while water pressure in
isolated cavities is dictated by their volume. Second, a more
general dynamic model assumes viscoelastic ice flow and ex-
plicitly considers how water is redistributed within the cav-
ities by water pressure gradients, in a manner analogous to
hydrofracture models for pre-existing cracks. The hydraulic
conductivity that controls water flow is large within cavities
(ensuring rapid equilibration) but vanishes when the ice–bed
gap is zero, thereby allowing the model to capture the for-
mation of isolated cavities and of isolated but uncavitated
low-pressure regions in a dynamic framework.

The two versions of the model are susceptible to solution
by different methods, making the simpler, purely viscous,
steady-state version a useful test case for the more compli-
cated dynamic version. To make the presentation more man-
ageable, I have split these two model versions across two sep-
arate papers, focusing here on the purely viscous steady-state
model. The dynamic model is presented in a companion pa-
per (Schoof, 2023), which I will refer to below as Part 2.
The present paper is structured as follows: first, I describe
the mathematical model formulation in Sect. 2, with various
technical aspects of the solution relegated to the appendices.
In Sect. 3.1, I investigate how cavity extent depends on the
effective pressure in the ambient drainage system, on the lo-
cation of the permeable part P of the bed directly connected
to the ambient drainage system, and on the past history of
cavity formation across the bed. Subsequently, I use these
solutions for cavity geometry in Sect. 3.2 to compute friction
laws: that is, the corresponding amount of basal drag as a
function of sliding velocity and effective pressure. I then in-
vestigate in Sect. 3.4 whether changes in bed geometry quali-
tatively affect the results. Implications for large-scale models
of subglacial hydrology and glacier dynamics are discussed
in Sect. 4.

2 A two-dimensional viscous steady-state model

Consider the possibility of isolated cavities in the two-
dimensional, purely viscous, steady-state model of sub-
glacial cavitation in Fowler (1986) and Schoof (2005). Based
on the approximation of small bed slopes pioneered in Nye
(1969) and Kamb (1970), the model can be written as fol-
lows: ice occupies the half-space y > 0 in the Cartesian
(x,y) plane. In that domain, ice flow satisfies Stokes’ equa-
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Figure 1. Definitions used in the model. The upstream and down-
stream cavity end points of the j th cavity are denoted by bj and cj ,
respectively. a is the width of the periodic domain. h(x) is the cavity
roof height and b(x) the local bed elevation. I use beige colouring
throughout the paper to indicate the permeable part P of the bed and
grey for the impermeable part. The blue curve−σnn = p−2η∂v/∂y
shows that compressive normal stress against x. −σnn must exceed
the negative effective pressure −Nj locally around any given cav-
ity j as shown, but not globally, allowing low-pressure contact ar-
eas (with normal stress below −N ) to exist as shown. Cavity j = 2
here is an isolated cavity, with fixed volume V2, while cavity j = 1
is connected as it overlaps with P .

tions,

η∇2u−∇p = 0, ∇ ·u= 0. (1)

Here, u= (u,v) is the perturbation in ice velocity around a
mean (ub,0) introduced by flow over bed topography, while
p is the reduced pressure (that is, the actual pressure minus
the cryostatic overburden), ∇ is the usual two-dimensional
gradient operator, and η is the viscosity of ice, assumed to be
constant here, and I assume that ub > 0 so mean flow is to
the right in Fig. 1.

To be definite, I also assume the domain to be periodic in
x with period a (Fig. 1). At the base of the ice y = 0, let the
set of points at which there is contact between ice and bed
be denoted by C′, and let the complement C denote cavities,
or regions of ice–bed separation. Everywhere at the bed, x ∈
C ∪C′, we assume vanishing shear stress

∂u

∂y
+
∂v

∂x
= 0 (2)

For x ∈ C′, the normal component of velocity vanishes, lead-
ing to the boundary condition

v = ub
∂b

∂x
, (3)

where b(x) is the elevation of the bed about a mean. Con-
versely, let C be composed of a set of disjoint intervals

Cj = (bj ,cj ), each representing a separate cavity. On each
Cj , normal stress is prescribed in the form

p− 2η
∂v

∂y
=−Nj , (4)

whereNj is the effective pressure in the j th cavity, defined as
the difference between overburden and water pressure in the
cavity. The cavity roof elevation hC satisfies the steady-state
kinematic boundary condition

v = ub
∂hC

∂x
(5)

on C with hC = b at cavity end points, so the lower bound-
ary of the ice is continuous. These boundary conditions are
combined with far-field conditions:

p, u→ 0 as y→∞. (6)

The previous work in Schoof (2005) assumed that the wa-
ter pressure in each cavity is the same, implicitly requiring
a highly permeable bed and allowing a universal effective
pressure to be defined as N =Nj for all j . Taking the im-
plied permeability of the bed further, Schoof (2005) added
the inequality constraints

p− 2η
∂v

∂y
≥−N for x ∈ C′ (7)

hC >b for x ∈ C (8)

in order to determine the extent of cavities. Physically, these
inequalities represent the idea that normal stress cannot be
less than the (assumed uniform) water pressure anywhere at
the bed, since water will force its way between the ice and
bed in that case, forming a new cavity, and that a cavity only
exists if the cavity roof is indeed above the bed.

Here I abandon the assumption of a fully permeable bed. If
parts of the bed are instead impermeable, there is no univer-
sally defined water pressure, and water will not force its way
between the ice and bed simply because the normal stress
drops locally to the water pressure in a distant drainage sys-
tem. Water pressure is still assumed to be constant in each
cavity while potentially differing between cavities, so the Nj
values are constants but need not be equal to one another. As
a result, the constraint (7) also need no longer hold across the
bed.

To be more specific, I assume that only a part P of the
bed is permeable and connected to a drainage system at pre-
scribed effective pressure N . Hence the condition (Eq. 7)
holds for x ∈ P , and any cavity straddling a part of P will
be “connected” at the drainage pressure N . (P is a part of
the bed, but specified here only in terms of the horizontal
coordinates of points in P at the ice–bed interface, since
no depth-dependent physics in the bed are resolved by the
model.) Any cavity not straddling P will be “isolated” and
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required to hold a prescribed volume of water,

Vj =

cj∫
bj

(hC − b)dx, (9)

which, if a solution exists, determines the effective pressure
Nj . The constraint (8) still holds, but the inequality (7) is
instead replaced by the weaker requirement that

p− 2η
∂v

∂y
>−Nj (10)

in some finite intervals (bj − δ,bj ) and (cj ,cj + δ) (that is,
there is some δ > 0 such that the constraint 10 holds), ensur-
ing that the cavity remains sealed.

Outside of the intervals (bj−δ,bj ) and (cj ,cj+δ), the in-
equality (10) can, and in general will, be violated somewhere
as indicated in Fig. 1. The possibility of such underpressur-
ized regions is the primary difference between the permeable
and impermeable bed models. By not bounding compressive
normal stress everywhere at the bed, however, the model does
not allow a vapour-filled cavity to form if the normal stress
drops to the triple-point pressure of water. In order to incor-
porate the latter effect, I would need to add the constraint that
p− 2η∂v/∂y >−pi in C′, where pi is ice overburden, and
set p− 2η∂v/∂y =−pi in any cavity that does not straddle
P and in which the prescribed water volume Vj (potentially
equal to zero) would lead to an effective pressure Nj > pi
if the volume constraint (9) were imposed. I omit this com-
plication here on the basis that I expect overburden pi to
be large compared with the typical normal stress variations
caused by ice flow over bed undulations; suffice it to point
out that the model described in Part 2 can in principle de-
scribe vapour-filled cavities.

Also note that Stubblefield et al. (2021) employ a similar
but ultimately distinct volume constraint to Eq. (9): theirs
is a global constraint, in which the bed is fully permeable
(equivalent to P = (0,a) here) and all cavities are at the same
effective pressure, but the latter is not prescribed. Instead, the
total cavity volume is prescribed through initial conditions,
the constraint itself being imposed on normal velocity so as
to conserve that initial volume. Equation (9) here is a local
constraint instead, prescribing the volume of an individual
cavity.

The specification of a permeable bed portion P may be
awkward but is realistically the only way to model partial ac-
cess of the drainage system to the bed in two dimensions.
Strictly speaking, water here is assumed to flow through the
permeable bed in P in order to access connected cavities,
but P can also be thought of as locations where an ambient
drainage system is able to access the flowline being modelled
laterally along the ice–bed interface, with the lateral dimen-
sion remaining unresolved. Below, I will typically consider
either the entire bed permeable with P = (0,a), or I will con-
sider a small permeable patch around a single location, which

I will denote by xP . I will typically choose xP to be the loca-
tion of a local minimum of compressive normal stress for an
uncavitated bed, since that is where cavities first form for a
permeable bed. In addition, in Sect. 3.3 I consider larger per-
meable bed portions P that do not align with these normal
stress minima.

In any case, the modified steady cavity problem can be
solved by a slight modification to the complex variable
method in Schoof (2005), whose numerical method I also
adapt. The technical detail is relegated to the Appendix. A
steady-state solution to the model is likely to be highly non-
unique, since the placement of prescribed water volumes Vj
in isolated cavities is history-dependent and quite arbitrary
in a steady-state model (by contrast, the dynamic model de-
scribed in Part 2 self-consistently determines the volume of
isolated cavities, precisely because it tracks the evolution in
time of cavities).

In the next subsection, I consider a system of cavities that
is in quasi-equilibrium, forced by a very slowly changing ef-
fective pressure N in the ambient drainage system. I also as-
sume that the bed starts with no cavities. The latter initially
form around the permeable parts P of the bed when N is
made sufficiently small. The cavities at first remain trapped
between prominent protrusions but can drown these bed pro-
trusions abruptly when N is decreased to some critical val-
ues; I describe the method by which I compute the enlarged
cavity in detail in Appendix A4. If N is increased again, the
extended cavity roof can then make contact again with the
drowned bed protrusion, thereby (in two dimensions) sealing
the lee side of that protrusion and forming an isolated cavity.
The volume of that isolated cavity is dictated by cavity size
at the point where the cavity roof re-contacts, making the so-
lution unique for a sequence of slow changes in N . Again,
Appendix A4 provides further detail.

3 Results

3.1 Cavity geometry

Figure 2 shows the evolution of cavity geometry for the
double-bumped periodic geometry,

b(x)= h0

[
sin
(

2πx
a

)
+ sin

(
4πx
a

)]
, (11)

with h0 and a constant. I focus first on the reference case
of a fully permeable bed, as previously considered in Fowler
(1986), Schoof (2005), Gagliardini et al. (2007), Helanow
et al. (2020, 2021), Stubblefield et al. (2021), and de Diego
et al. (2022, 2023).

Note that, when expressed as functions of a scaled posi-
tion x∗ = 2πx/a along the bed, cavity size and shape de-
pend only on the following dimensionless effective pressure
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Figure 2. Cavity roof shape h∗
C
(x∗) and bed elevation b∗(x∗) for

the bed given by Eq. (11) with P ∗ = (0,2π) and (a1) N∗ = 7.6,
(b1) N∗ = 4.02, (c1) N∗ = 1.19, and (d1) N∗ = 0.91. The corre-
sponding compressive normal stresses −σ∗nn are plotted in panels
(a2)–(d2).

(Fowler, 1981, 1986):

N∗ =
Na2

4π2h0ηub
, (12)

and I adopt this here to reduce the parameter space to be ex-
plored. Similarly, a dimensionless compressive normal stress
defined by

−σ ∗nn =
a2

4π2h0ηub

(
p− 2η

∂v

∂x

)∣∣∣∣
y=0

(13)

also depends only on N∗ when expressed in terms of the
scaled position x∗. I use σ ∗nn to visualize normal stresses at
the bed. In the same vein, I use b∗ = b/h0 and h∗C = hC/h0
as scaled bed and cavity roof elevations, and I use P ∗ = {x∗ :
x∗a/(2π) ∈ P } as the scaled version of the permeable bed.

With the bed geometry given by Eq. (11), the basal com-
pressive normal stress −σ ∗nn has two equally deep minima
around x∗ = 1.64 and x∗ = 4.65 prior to cavity formation.
Two cavities per bed period form simultaneously around
these locations in the lee of the two bed protrusions when ef-
fective pressure N∗ drops below a critical value N∗init = 8.06
(panel a1 and a2 of Fig. 2). The cavity roof h∗C remains very

Figure 3. Panel (a) shows the effective pressure N∗ against cavity
end-point positions b∗

j
and c∗

j
for a fully permeable bed of the form

in Eq. (11). N∗init and N∗disconnect are defined in the main text, and
“contact” and “cavity” mark the sides of the black curve occupied
by contact areas and cavities. Panel (b) shows the corresponding
upper surface elevation b∗(x∗) of the bed against x∗.

close to the bed b∗ in the cavities initially, which are there-
fore easier to discern in the normal stress distribution −σ ∗nn
(panel a2). The pattern of normal stress shown here is com-
mon to the steady-state cavity solutions computed elsewhere
(Fowler, 1986; Schoof, 2005; Gagliardini et al., 2007; Stub-
blefield et al., 2021; de Diego et al., 2022, 2023): compres-
sive normal stress is continuous at the upstream end of the
cavity, with larger values immediately outside the cavity than
inside acting to contain the water in the cavity, and normal
stress has a positive singularity at the downstream cavity end.
I show in Appendix A5 that this stress pattern necessarily fol-
lows from the inequalities (8) and (10).

The cavities expand continuously as N∗ is lowered further
until they merge at a second critical value N∗disconnect = 1.19
(panels c1 and c2), and the merged cavity then continues to
expand further. IfN∗ is raised again, cavity evolution is com-
pletely reversible: for instance, the merged cavity once more
separates in two at N∗ =N∗disconnect.

The dependence of cavity size on N∗ can be visualized
by plotting cavity end-point positions b∗j = 2πbj/a and c∗j =
2πcj/a against N∗ (Fig. 3, where the two critical values
are marked with broken horizontal lines). Note that there is
a unique solution for every N∗ here, corresponding to ei-
ther a single merged cavity or two separate cavities. The la-
bels “contact” and “cavity” indicate which side of the black
curves corresponds to a contact area and a cavity, respec-
tively. A second key feature of Fig. 3 is that the contact ar-
eas disappear at N∗ = 0 and no solution exists for negative
effective pressures N∗ < 0: naturally, when water pressure
is above overburden, force balance can no longer be main-
tained.

The behaviour is somewhat different if I restrict the per-
meable portion P ∗ of the bed to a small region around the
upstream stress minimum at x∗ = x∗P := 1.64 (Fig. 4). With
only this small portion of the bed being permeable, a cav-
ity starts to form at x∗P when N∗ =N∗init = 8.04. As effec-
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Figure 4. Cavity roof shape h∗
C
(x∗) and bed elevation b∗(x∗) for

the bed given by Eq. (11) with P ∗ = {1.64} and (a1) N∗ = 4.01,
(b1) N∗ = 0.92, (c1) N∗ = 0.91, (d1) N∗ = 1.19, and (e1) N∗ =
4.02. The permeable and impermeable portions of the bed are ren-
dered in beige and grey, respectively. The corresponding normal
stresses −σ∗nn are plotted in panels (a2)–(e2); note that the isolated
cavity in (e2) is at a different constant pressure than the connected
cavity around the permeable bed portion P ∗.

tive pressure in the drainage system is lowered, the cavity
grows first on the lee side of the large bed protrusion to the
left (to which the cavity is “attached”), while the lee of the
smaller protrusion to the right remains uncavitated as shown
in Fig. 4a1. (Note that I will use “large” or “prominent” pro-
trusion to describe the protrusion that has the largest differ-
ence in height between the local maximum at its top and the
local minimum on its upstream side.) This contrasts with the
fully permeable bed case, where the lee sides of both bed pro-
trusions become cavitated at the same N∗ (see also Fig. 3).

As before, the normal stress around the cavity is continu-
ous at the detachment point at the upstream end of the cav-
ity and singular at the reattachment point at the downstream
end (Fig. 4a2). Normal stress exceeds −N∗ at both ends as

required by the constraint (10). Note, however, that normal
stresses on the lee side of the smaller protrusion are lower
than −N∗, and inequality (7) is violated there, away from
the permeable bed portion P : an isolated underpressurized
region forms here, separated from the cavity by the high-
normal-stress region in the lee of the cavity.

As N∗ is decreased, the cavity expands, while the size of
the high-stress region isolating the lee of the smaller bed
protrusion shrinks. Eventually, the confinement of the cav-
ity at its downstream end becomes marginal (Fig. 4b2) at
N∗ =N∗connect = 0.92. A further reduction in N∗ causes the
cavity to expand abruptly across the top of the smaller bed
protrusion (Fig. 4c).

The newly expanded cavity roof now has a finite size
gap above the smaller bed protrusion. It expands further,
but now continuously, if effective pressure is lowered again.
The expanded cavity is in fact identical in shape to the sin-
gle merged cavity that forms for a fully permeable bed at
the same effective pressure. More significantly, if N∗ is in-
creased again from the critical value of N∗connect, the cavity
roof does not immediately re-contact the bed again. In or-
der for the enlarged cavity roof to re-contact the smaller bed
protrusion, N∗ has to increase by a finite amount to N∗ =
N∗disconnect = 1.19>N∗connect (Fig. 4d). That higher critical
value is equal to the effective pressure at the merger of the
two cavities that form independently in the lee of both bed
protrusions when the entire bed is permeable, P ∗ = (0,2π)
(Fig. 3), and I use the same symbol N∗disconnect deliberately.

In the present two-dimensional model, re-contact with a
limited permeable bed portion immediately leads to the for-
mation of a second isolated cavity downstream of the right-
hand bed protrusion, which I treat as retaining a constant
volume V2 = 1.062ah0/(2π) after reattachment (this being
the volume at reattachment). A further increase in effective
pressure N∗ in the permeable portion P ∗ of the bed leads to
the original cavity in the lee of the left-hand bed protrusion
shrinking again, eventually disappearing at a critical value
of N∗shrink = 7.99, slightly less than the value of N∗init = 8.06
at which the cavity was originally formed. Meanwhile, the
effective pressure N∗2 in the isolated cavity typically differs
from N∗1 =N

∗ in the connected cavity (Fig. 4e). Note that
the solution is non-unique here: panels (a) and (e) of Fig. 4
correspond to (nearly) the same effective pressure N∗.

Conversely, if N∗ is lowered again, the cavity that is at-
tached to the larger bed protrusion on the left will reconnect
to the isolated cavity that is attached to the smaller bed pro-
trusion on the right at the same critical value Ndisconnect at
which the isolated cavity originally formed: changes in cav-
ity geometry become reversible once the lee sides of both bed
protrusions have become cavitated.

The dependence of cavity end points on N∗ is again plot-
ted systematically in Fig. 5a, which is analogous to Fig. 3.
The black curves show cavity end-point positions that result
if I start with an uncavitated bed and only lower N∗, with
the abrupt cavity enlargement at N∗ =N∗connect clearly vis-
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Figure 5. Panel (a) shows effective pressure N∗ against cavity end-
point positions b∗

j
and c∗

j
for a bed of the form in Eq. (11) with P ∗

concentrated around 1.64. N∗init, N
∗
shrink, N∗disconnect, and N∗connect

are defined in the main text, and “contact” and “cavity” mark con-
tact areas and cavities on either side of the black curves (solutions
obtained by starting with an uncavitated bed atN∗ =N∗init and low-
eringN∗). The red curves show solutions obtained whenN∗ is low-
ered belowN∗connect and raised aboveN∗disconnect subsequently. The
newly formed isolated cavity is marked in red. Panel (b) shows ef-
fective pressure N∗ against cavity end-point positions b∗

j
and c∗

j

for a bed of the form in Eq. (11) with P ∗ concentrated around
x∗
P
= 4.65. N∗drown is defined in the main text. Panel (c) shows

the corresponding elevation b∗(x∗) of the upper surface of the bed
against x∗. The beige strips labelled Pa and Pb indicate the perme-
able bed portions used in panels (a) and (b), respectively.

ible as a discontinuity in the downstream cavity end-point
position c1. The upstream cavity end point in fact shifts dis-
continuously too, but by an amount that may be too small
to discern. As in Fig. 3, the contact area again vanishes at
N∗ = 0 and no solution exists for negative N∗: in fact, the
solutions in Figs. 3 and 5a are identical forN∗ <N∗connect. If,
on the other hand,N∗ is first lowered belowN∗connect and then
raised again, the cavity end-point solution follows the red
curve above the disconnection valueN∗disconnect. Note that the
isolated cavity that forms (indicated by red lettering) initially
shifts slightly upstream as N∗ is increased above N∗disconnect,
but then remains relatively unaltered as the connected cavity
shrinks and disappears.

In addition, I have plotted the effective pressure N∗2 in the
isolated cavity against the forcing effective pressure N∗ in
Fig. 6. The effective pressure N∗2 mostly increases as N∗

does, implying a drop in water pressure in the isolated cav-
ity as water pressure in the connected drainage system drops,
albeit at a slower rate. This may be surprising given obser-
vations of anticorrelated water pressures between connected
and unconnected parts of the bed (Murray and Clarke, 1995;
Lefeuvre et al., 2015; Rada and Schoof, 2018). There are two

Figure 6. In red is the effective pressure N∗2 =−σ
∗
nn in the iso-

lated cavity formed as in Fig. 4d against effective pressure N∗ in
the connected cavity around the permeable bed portion P . The ef-
fective pressure N∗ =N∗1 in the connected cavity is plotted as a
black dashed line, terminated atN∗ =N∗shrink, where the connected
cavity disappears. The isolated cavity exists pastN∗shrink, but not for
N∗ <N∗disconnect.

important differences here: first, the water pressure variations
being considered are not transient, and consequently the size
of both cavities has fully adjusted to steady-state conditions
after a change in effective pressure N∗. Second, in a flow-
line model, the redistribution of normal stress considered by
Murray and Clarke (1995) and Lefeuvre et al. (2018) is mod-
ulated by flow over bed topography and by changes in the
extent to which bed topography is drowned by cavities. For
the bed geometry in Eq. (11) under consideration, an increase
in N∗ in the connected cavity leads to more of the upstream
face of the right-hand protrusion being covered by ice. The
need to flow up and over that protrusion leads to a reduction
in normal stress in its lee and hence to a drop in the water
pressure required to maintain a cavity of fixed volume in its
lee. This explains the increase in N∗2 with increases in N∗

here.
The ability of a cavity to expand across bed protrusions

and subsequently create isolated cavities as described above
depends on the position of the permeable portion of bed rel-
ative to prominent bed protrusions. Consider the same bed
given by Eq. (11), but move the permeable portion of the
bed to x∗P = 4.65. In that case, a cavity initiates here at the
same initial value N∗init = 8.06. Now, however, the cavity is
attached to a smaller bed protrusion and remains confined in
its lee for all positive values of N , separated from the low-
pressure region downstream of the more prominent protru-
sion by high normal stresses on either side of the cavity. This
confinement in fact persists all the way to a negative effective
pressure N∗drown =−0.79 (Fig. 7). Beyond this critical effec-
tive pressure, the ice fully detaches from the bed, and vertical
force balance is once more violated.

Note that the cavity is not able to expand upstream to the
lee side of the bigger bed protrusion and only expands down-
stream past that bigger protrusion at the negative effective
pressureN∗drown when the confinement at the downstream end
disappears: the normal stress upstream of the cavity remains
in excess of water pressure even then. As with the previ-
ous example, I have plotted the position of cavity end points
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Figure 7. Cavity roof shape h∗
C
(x∗) and bed elevation b∗(x∗) for

the bed given by Eq. (11) with P ∗ = {4.65} and (a1) N∗ = 7.60,
(b1) N∗ = 4.02, (c1) N∗ = 0, and (d1) N∗ =−0.79. The perme-
able and impermeable portions of the bed are rendered in beige
and grey, respectively. The corresponding normal stresses−σ∗nn are
plotted in panels (a2)–(d2); note that positive values of −σ∗nn as in
panel (d2) correspond to negative effective pressure.

against N∗ in Fig. 5b. As in the fully permeable bed case in
Fig. 3, there is now a unique solution, though it no longer
disappears at N∗ = 0. Note that the ability of cavities to re-
main contained at negative effective pressure due to uneven
stresses induced by ice flow over topography may also be
significant observationally, since sustained negative effective
pressures are a frequent feature of borehole water pressure
records (e.g. Rada and Schoof, 2018).

3.2 Basal drag

We can also ask how the formation of isolated cavities, and
confinement of cavities, affects basal drag defined through
(Fowler, 1986; Schoof, 2005)

τb =
1
a

a∫
0

(
p− 2η

∂v

∂x

)∣∣∣∣
y=0

∂hC

∂x
dx, (14)

Figure 8. Friction law for the bed given by Eq. (11): τ∗b =
τba/(2πN) against 1/N∗ = 4π2h0ηub/(a

N ) for the solutions
shown in Figs. 3 and 5. The solid black curve (consisting of mul-
tiple segments) corresponds to the solution shown as a black curve
in Fig. 5a (single cavity connected to a permeable bed P ∗ around
x∗ = 1.64), while the red curve here also corresponds to the red
curve in Fig. 5a (connected cavity around x∗ = 1.64 and an isolated
cavity around x∗ = 4.65). The dashed blue curve corresponds to the
solution in Fig. 5b (single connected cavity around x∗ = 4.65); be-
cause the latter solution extends to negativeN∗, the friction law can
likewise be extended to values of 1/N∗ < 1/N∗drown < 0 as shown
in the inset. The continuous dashed black curve (partly obscured by
the solid black curve for 1/N∗ > 1/N∗connect) corresponds to the so-
lution for a fully permeable bed in Fig. 3. The line labelled “Iken’s
bound” is at τ∗b =max(∂b∗/∂x∗).

where I treat hC = b in the contact areas C′. As above, this
can be cast in dimensionless form, now defining

τ ∗b =
τba

2πh0N
, (15)

which is then a function of N∗ only (Fowler, 1986). For con-
sistency with Fowler (1986), Schoof (2005), and Gagliardini
et al. (2007), I plot τ ∗b against 1/N∗ = 4π2h0ηub/(a

2N) to
visualize the resulting friction law, with 1/N∗ effectively
being a proxy for ice velocity ub. Results for the double-
humped bed given by Eq. (11) are shown in Fig. 8.

The standard assumption of a fully permeable bed P ∗ =
(0,2π) gives rise to the single-valued, continuous black
dashed curve (partly obscured by the solid black curve as
indicated by the arrow marked “fully permeable bed”). It
corresponds to relatively small values of τ ∗b that satisfy
Iken’s bound τ ∗b ≤max(∂b∗/∂x∗) (Schoof, 2005): the max-
imum possible basal drag that can be attained is bounded
by bed slope, where, with the bed shape given by Eq. (11),
max(∂b∗/∂x∗)= 3. The shape of the dashed black curve
mirrors some of those in Schoof (2005).

With a small P ∗ centred around x∗P = 1.64, the friction
law changes significantly: the relationship of τ ∗b and 1/N∗

come in multiple branches, depending on the presence of iso-
lated cavities. When there is only a cavity in the lee of the
prominent bed protrusion on the left, basal drag is quite high
and can exceed Iken’s bound (whose derivation in Schoof,
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2005, is based on a permeable bed). Drag τ ∗b drops abruptly
when N∗connect is reached and the cavity expands to drown
out not only the second smaller bed protrusion, but also a
significant part of the steeper slope behind it (solid black
curve). Once the cavity has expanded and N∗ is increased
again, an isolated cavity forms, leading to values of τ ∗b that
are generally comparable to those for a fully permeable bed
(solid red curve). Below 1/N∗shrink ≈ 0.125, τ ∗b then simply
becomes linear in 1/N∗: this implies that τb ∝ ub indepen-
dent of N , as is familiar from theories of basal sliding in the
absence of cavitation (Nye, 1969; Kamb, 1970). In the ab-
sence of expanding or shrinking connected cavities, an iso-
lated cavity simply adopts a constant shape and changes its
internal water pressure to keep that shape. The effect of such
a constant-shape isolated cavity on steady-state basal drag is
the same as for a rigid bed, since the shape of the base of the
ice remains constant (although different from the uncavitated
bed).

For the alternative case of P ∗ centred around x∗P = 4.65
(dashed blue curve), the formation of a single confined cav-
ity means there is only a single branch of the relationship
between τ ∗b and 1/N∗. By contrast with the other cases con-
sidered above, τ ∗b now increases without bound as 1/N∗ in-
creases and, in fact, does so linearly in 1/N∗ for large 1/N∗.
The reason is simply that a finite cavity size is approached as
N∗→ 0, and simultaneously a finite τb is approached so that
τb/N must increase linearly in ub/N .

We, however, can also view 1/N∗→∞ as the limit of a
large velocity ub rather than the limit of a vanishing effective
pressure. Once more, I find linear behaviour analogous to that
in Nye (1969) and Kamb (1970) precisely because the con-
fined cavity adopts a constant steady-state shape in the limit
of large ub and therefore has the same effect as a rigid bed
in the sense that the base of the ice retains its shape when ub
changes, provided ub remains large. That shape differs from
the case of an isolated cavity discussed above, which explains
why the slope of the dashed blue curve for large 1/N∗ differs
from the solid red curve at small 1/N∗: even though the cav-
ity shape becomes independent of 1/N∗ in both cases, those
cavity shapes and locations differ from one another.

An oddity of the solution with x∗P = 4.65 is that it also
exists with negative values 1/N∗ < 1/N∗drown ≈−1.27 (see
inset in Fig. 8); this is not to be interpreted as a valid solution
for negative ub and positive N (which would give negative
N∗) but arises because although ub > 0 is assumed through-
out here, N∗ can be negative for x∗P = 4.65 (Fig. 5b).

As a further caveat, note that for a fixed N , unbounded τb
as shown in Fig. 8 results from the ability to generate arbitrar-
ily large compressive normal stresses on the upstream side of
the smaller bed protrusion, balanced by correspondingly neg-
ative compressive normal stresses on the downstream side in
the hydraulically isolated low-pressure region on the down-
stream side of the larger protrusion (Fig. 7c2, where −σ ∗nn
is scaled with 1/ub, so the actual stress is the pattern shown
multiplied by a coefficient proportional to ub). As described

in Sect. 2 immediately after Eq. (10), arbitrarily negative nor-
mal stresses cannot be generated since a vapour-filled cav-
ity will eventually form, and this should ultimately lead to a
bounded basal drag satisfying an amended version of Iken’s
bound, τb ≤max(∂b/∂x)pi , where pi is once more overbur-
den. The model here ignores that possibility, effectively treat-
ing pi as infinite for the purposes of bounded basal drag.

3.3 More complicated permeable bed portions

The results above were computed either for completely per-
meable beds or for beds that had permeable sections lo-
cated at normal stress minima prior to cavity formation. As
pointed out, I view these permeable bed portions P as poten-
tial proxies for lateral access from a three-dimensional ambi-
ent drainage system along an unmodelled part of the ice–bed
interface, to one side of the flowline that the model describes.
In that case it may make sense for that lateral access to reach
the modelled flowline in places where compressive normal
stress has local minima. Locating the permeable bed where
cavities form at the highest possible values of N is also con-
venient as it reduces the number of additional parameters that
describe the bed in the absence of a more sophisticated three-
dimensional model.

In order to investigate the effect of choosing different per-
meable bed portions P , I plot in Fig. 9 the dependence of
cavity end-point positions on effective pressure N∗ for the
same bed geometry (Eq. 11) as before, but for two alternative
choices of P ∗: in panel (a), P ∗ is the union of the intervals
Pa = (5.890,6.283) and Pb = (2.316,2.749), while in panel
(b), P ∗ = Pb. In both cases, if I start with an uncavitated bed,
a cavity first forms around the permeable patch Pb at a criti-
cal value N∗ =N∗init2

≈ 2.00; this the normal stress −σ ∗nn at
the upstream end x∗ = 2.316 of the interval Pb when the bed
is uncavitated.

Once formed, the cavity immediately has a finite size that
extends beyond Pb and is identical to the single-cavity solu-
tion shown by the black curve in Fig. 5a. The black curve in
Fig. 9a and b traces the growth of the cavity asN∗ is lowered
below the initiation value N∗init2

and remains identical to the
corresponding portion of the black curve in Fig. 5a, with the
cavity expanding past the second smaller bed protrusion at
the same critical value N∗connect as in Fig. 5a.

Conversely, ifN∗ is increased after initial cavity formation
N∗init2

, the single cavity in the lee of the larger bed protru-
sion remains connected up to a much higher critical pressure
N∗disconnect2

≈ 6.70: because the cavity that is established at
N∗init2

extends far beyond the permeably patch, a significant
increase in N∗ is needed to shrink it to the point at which
the connection is lost to the permeable part of the bed patch.
This is shown by the red curves in Fig. 9a and b, which re-
main identical to the black curve in Fig. 5a up to N∗disconnect2

,
after which an isolated cavity forms as the downstream con-
tact point moves past the upstream end of the interval Pb.
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The only difference between the solutions in Fig. 9a and
b arises if effective pressure is lowered below the critical
value N∗connect, at which the cavity extends past the lower
bed protrusion, and subsequently raised to the critical value
N∗disconnect at which the downstream portion of the enlarged
cavity becomes separated again by a contact area in Figs. 3a
and 5a. Solutions for that situation are shown as blue curves
in Fig. 9a and b. In Fig. 9a, the permeable portion Pa in the
lee of that smaller bed protrusion keeps the downstream cav-
ity connected up to a critical effective pressure N∗disconnect3

≈

4.00. The blue curve in that case remains identical to the
solution for a fully permeable bed shown in Fig. 3a up to
that point; at N∗disconnect3

, the downstream end of the cavity
attached to the smaller bed protrusion moves past the up-
stream end of Pa. By contrast, the absence of a downstream
permeable interval immediately isolates the downstream cav-
ity when N∗disconnect is reached in Fig. 9b. The blue curve in
Fig. 9b is therefore identical to the solution for an isolated
downstream cavity shown in red in Fig. 5a. This is true until
the upstream cavity also disconnects again at a critical pres-
sure N∗disconnect4

very close to N∗disconnect2
.

These results serve as an illustration of how the placement
of drainage access can serve to complicate the computation
of cavity extent. Note, however, that in many cases the so-
lutions shown in Fig. 9 correspond to appropriately spliced-
together segments of the simpler solutions of Figs. 3 and 5,
with each segment limited by the value of N∗ at which a
cavity loses connection to P ∗. The key takeaway is probably
that the location of the permeable patch P ∗ may make irre-
versibility under changes in N∗ more pronounced: if P ∗ is
not centred around the location of the lowest normal stress
for an uncavitated bed, then a fairly low effective pressure
N∗ may be required to initiate cavity formation (given by
N∗init2

in Fig. 9), but the cavity that is then formed can remain
connected to the drainage system up to much larger effective
pressures (N∗disconnect2

in Fig. 9).

3.4 A more complicated bed shape

The results I have found above for the double-humped bed
given by Eq. (11) translate qualitatively to other more com-
plicated bed geometries. Below, I use the following triple-
humped periodic bed profile as an illustration.

b(x)= h0

{
sin
(

2πx
a

)
+

1
2

[
cos

(
4πx
a

)
−sin

(
4πx
a

)]
+ sin

(
8πx
a

)}
(16)

Figure 10 shows N∗ against the location of cavity end
points as in Figs. 3 and 5. I see similar behaviour as for the
double-bumped bed: with spatially limited drainage access
P , cavities can expand to drown bed protrusions in their lee,
but not on their upstream side (panel b). In order to drown
a lee-side bed protrusion at a positive effective pressure, the

Figure 9. The effect of permeable bed patch location, using the
same plotting scheme as Fig. 3. Panel (a) shows the cavity end-
point location against N∗ for P ∗ = Pa ∪Pb, Pa = (5.890,6.283),
and Pb = (2.316,2.749). Black shows cavity end points obtained
when decreasing N∗ from the initiation value N∗init2

, and red shows
cavity end points obtained when increasing N∗ after first establish-
ing a cavity at N∗init2

. Blue (partly obscured by red) shows cavity
end points obtained when increasing N∗ after first lowering effec-
tive pressure below N∗connect. The black curve in Fig. 5a is shown
as a dashed grey curve, and the black curve in Fig. 3 is shown
as a dot-dashed grey curve. Panel (b) shows cavity end points for
P ∗ = Pb. The black curve and red curves are identical to panel (a),
and the blue curve is analogous to panel (a), showing the cavity end-
point position against N∗ if N∗ has previously been lowered below
N∗connect. The black and red curves in Fig. 5a are shown as dashed
and dot-dashed grey curves, the latter almost completely obscured
by the blue curve. Panel (c) shows the bed and location of Pa and
Pb.

cavity in question needs to be attached to a larger bed pro-
trusion than that being drowned (panel b). That drowning is
also irreversible, leaving isolated cavities in place if N is in-
creased again by a sufficient amount (red and blue solution
curves in panel b). Where a cavity is attached to a small bed
protrusion upstream of a larger one, it typically remains con-
fined even at small negative effective pressures up to a critical
value beyond which force balance is violated and no solution
exists (panels c and d).

The critical effective pressure at which a cavity extends
abruptly across a smaller protrusion in its lee is marked by
dotted black lines in Fig. 10b (this is equivalent to Nconnect in
Fig. 5a, although there are two such critical values in Fig. 10b
as there are two smaller bed protrusions in the lee of the
largest protrusion). Once the critical effective pressure has
been reached and the cavity has extended, contact with the
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Figure 10. Panel (a) shows effective pressure N∗ against cavity
end-point positions for a fully permeable bed with shape given by
Eq. (16) as solid black curves. Note that the solution is unique. Panel
(b) shows the cavity end-point positions for the same bed with a
small P ∗ = Pb centred around x∗

P
= 3.23 (in the lee of the large

bed protrusion; see panel e). Black shows the solution for a single
cavity initiated around x∗

P
. Red shows the solution with a single iso-

lated cavity and blue with two isolated cavities. The dashed black
line shows values ofN∗ at which the single cavity expands abruptly,
and the dashed red and blue curves show the formation of isolated
cavities and the closing of the connected cavity in the presence of
one or two isolated cavities. See the inset for details on cavity ex-
pansion and formation of an isolated cavity. Panel (c) shows the
cavity end-point positions for the same bed with a small P ∗ = Pc
centred around x∗

P
= 5.25 (in the lee of the smallest bed protrusion

as shown in panel e). The dashed line shows the negative value of
N∗ at which the cavity no longer remains confined and the ice de-
taches from the bed. Panel (d) shows the cavity end-point positions
for the same bed with a small P ∗ = Pd centred around x∗

P
= 1.03

(the medium bed protrusion; see panel e). Panel (e) shows the corre-
sponding bed surface elevation b∗(x∗) defined by Eq. (16) against
x∗. The beige strips show the permeable areas Pb, Pc, and Pd used
in panels (b)–(d), respectively.

cavity roof can only be re-established by increasing effective
pressure to a somewhat different higher effective pressure
shown as blue and red dotted lines in Fig. 10b (equivalent to
Ndisconnect in Fig. 5a; see also the inset in panel b of Fig. 10).
At the point of re-contact, an isolated cavity is created be-
hind the lee-side bed protrusion. That isolated cavity will re-

Figure 11. Friction law – the equivalent of Fig. 8 for the bed given
by Eq. (16): τ∗b against 1/N∗ for the solutions shown in Fig. 10.
Dashed black (partially obscured by solid black as indicated by ar-
rows) corresponds to the permeable bed solution in Fig. 10a. Solid
black (multiple segments), red, and blue correspond to the solutions
shown in black, red, and blue, respectively, in Fig. 10b. The dashed
red curve corresponds to the solution in Fig. 10c and dashed blue to
the solution in Fig. 10d. The latter two do extend to some negative
values of 1/N∗ (not shown).

connect again if the effective pressure is lowered back to the
same critical value at which it first formed. In other words,
once a cavity has expanded past a lee-side bed protrusion, it
will do so again more readily, facilitated by the presence of
an isolated cavity behind that protrusion, instead of the orig-
inal isolated region of ice–bed contact at low normal stress.
The disconnection of isolated cavities is reversible, unlike the
flooding of low-pressure contact areas.

The friction law for the triple-humped bed (Fig. 11) is
more complicated than for the double-humped bed on ac-
count of the fact that different numbers of isolated cavities
can form, but it again retains similar features: high levels of
basal drag τ ∗b are favoured when smaller lee-side bed pro-
trusions have not been drowned yet or when cavities remain
confined in the lee of small bed protrusions. For the latter
case, basal drag is again unbounded as 1/N∗→∞. The
abrupt expansion of a cavity corresponds to an abrupt drop
in drag, as it does in Fig. 8. The lowest levels of basal drag
are typically generated for permeable beds and for fully cav-
itated beds.

One behaviour that differs subtly between the two bed ge-
ometries considered here is the dependence of effective pres-
sure in isolated cavities on the effective pressure in connected
cavities. For the triple-humped bed (Fig. 12), I see that ef-
fective pressure in an isolated cavity directly downstream of
the connected cavity increases with forcing effective pressure
N∗ as in Fig. 6 (with the increase again being rapid when the
cavity first forms and then much less than linear in N∗). This
corresponds to the upward slope of both the blue and red
curves near their left-hand starting points, which mark the
effective pressures at which the corresponding cavities first
become isolated. However, once the larger isolated cavity be-
comes separated from the connected cavity upstream by an
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Figure 12. Effective pressure in the isolated cavities shown as the
blue solution in Fig. 10b against the corresponding effective pres-
sure N∗ =N∗2 in the connected cavity (the equivalent of Fig. 6 for
the triple-bumped bed given by Eq. 16). Blue shows the effective
pressure N∗1 in the isolated cavity around x∗ = 1.03, and red shows
effective pressureN∗3 in the isolated cavity around x∗ = 5.25, while
the black dashed line showsN∗2 =N

∗ for the range of values ofN∗

for which the j = 2 cavity is open. Note that N∗1 decreases slightly
with forcing effective pressure N∗ once the second smaller isolated
cavity around x∗ = 5.25 has formed.

additional isolated cavity in the lee of the smallest bed pro-
trusion, then effective pressure in that larger isolated cavity
actually decreases with N∗: the blue curve in Fig. 12, repre-
senting effective pressure in the isolated cavity in the lee of
the second-tallest bed protrusion, actually slopes downwards
very slightly underneath the red curve (that is, once there is
an isolated cavity in the lee of the smallest bed protrusion,
which separates the second-tallest from the tallest protrusion
as shown in Fig. 10b).

4 Discussion

4.1 Steady-state subglacial hydrology

The steady-state solutions in Sect. 3 point to three primary in-
sights: first, if the bed is forced by slow changes in drainage
system effective pressureN and is therefore always in steady
state except during brief transients, then connections to previ-
ously uncavitated parts of the bed are made at critical values
ofN/ub. These critical values depend on the geometry of the
bed and on the locations of the parts of the bed that are per-
meable and therefore intrinsically connected to the ambient
drainage system. The model denotes these parts by P , and
they are indicated by beige colouring throughout the paper.

Second, when such connections occur, they invariably ex-
tend the existing cavity in the downstream direction and
never upstream. This has major implications for the evolution
of connectedness of the bed and for the effective pressures
that can be sustained. For cavities that are caused by drainage
system access P immediately in the lee of prominent bed

bumps, downstream connections occur at positive effective
pressures, and smaller bed bumps are submerged by expand-
ing cavities first, as might be expected. If drainage system
access P is located in the lee of less prominent bed bumps,
then (perhaps counterintuitively) connections are made only
once sufficiently negative effective pressures are reached and
result in complete ice–bed detachment. Importantly, this im-
plies that sustained negative effective pressures at the glacier
bed are possible, as has been inferred from observations
(Rada and Schoof, 2018).

Third, once a connection has been made and the lee of
a smaller bed protrusion has become submerged, the cavity
space on that lee side can subsequently become isolated due
to an increase in effective pressure (or decrease in sliding ve-
locity), which causes the cavity roof to be lowered. The crit-
ical value for the disconnection between the upstream cav-
ity and newly isolated, cavity however, occurs at a higher
critical value N/ub than the original connection (Fig. 5). Im-
portantly, connection and disconnection become reversible at
this point: once the downstream side of a smaller bed bump
becomes cavitated, connection and disconnection happen at
the same critical value of N/ub. A corollary of this third
point is that it is easier to create connections once there are
isolated cavities in place, in the sense of that connection hap-
pening at a higher value ofN/ub than in the absence of those
isolated cavities.

The reader may wonder at this point why one would bother
with considering isolated, low-pressure contact areas at the
bed at all: since their flooding is irreversible, are they irrele-
vant, since they will connect sooner or later and henceforth
remain flooded, even if they become hydraulically isolated
again? The point here is that treating the bed as fully imper-
meable outside of the region P is likely to be an idealization:
in reality, there is almost certainly slow leakage through the
“impermeable” bed portions as also envisaged in Hoffman
et al. (2016) and Rada and Schoof (2018). If there are lengthy
periods outside of the active drainage season (with the latter
often occupying a relatively short part of the annual cycle)
during which that leakage can drain isolated cavities, then it
is possible that the bed starts each season in an uncavitated
state. In that case, the expansion of cavities initially confined
to locations with access to the drainage system occurs sea-
sonally.

A second point that needs to be addressed here is the lim-
itation imposed by using a two-dimensional domain. True
hydraulic connections over distances longer than a single
bed wavelength a are clearly only possible in two dimen-
sions if the ice becomes fully detached from the bed, which
is clearly not the object of the present study. In reality, hy-
draulic connections have to be made by connected cavity
space that goes around rather than over prominent bed bumps
in three dimensions. I anticipate that the results obtained here
are still relevant to individual connections between cavities
in three dimensions, with those cavities being extended lat-
erally and connecting further downstream or upstream at a
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lateral offset. Studying these more complicated geometries
requires a three-dimensional model (see also Helanow et al.,
2020, 2021) that can capture the dynamics of hydraulically
isolated cavities and of isolated, uncavitated, low-pressure
regions. The model presented in Part 2 is in principle capa-
ble of doing that, although in practice I have not been able
to run it in a three-dimensional configuration due to compu-
tational constraints: three-dimensional cavity dynamics with
hydraulic isolation remain an obvious area of future research.

4.2 Steady-state friction law

For a fully permeable bed, the ratio τb/N of basal drag to
effective pressure is a single-valued function of the ratio of
sliding velocity to effective pressure ub/N or, more gener-
ally, of ub/Nn for a power-law Glen’s law rheology with
exponent n (Fowler, 1986; Schoof, 2005; Gagliardini et al.,
2007; Helanow et al., 2021). That function behaves roughly
as a regularized Coulomb friction law, at least for highly ir-
regular beds (Schoof, 2005; Helanow et al., 2021). By con-
trast, partial permeability of the bed has a major effect on
basal friction: basal drag τb/N now depends not only on
ub/N , but also critically on where along the bed the region of
drainage access P is located and on whether isolated cavities
have previously been formed (Figs. 8 and 11).

The first qualitative difference between a permeable and
impermeable bed is that Iken’s bound τb ≤Nmax(∂b/∂x)
need not hold for the latter: the derivation of that bound
(Schoof, 2005) specifically relies on there being no compres-
sive normal stresses at the bed below the water pressure in
the ambient drainage system.

If drainage system access P is located in the lee of one
of the smaller bed bumps, then the resulting cavities remain
confined and do not lead to widespread ice–bed separation
until effective pressure becomes negative as discussed above
(see also Figs. 5 and 10). In that case, τb/N increases with-
out bound in ub/N , with the relationship becoming linear at
large ub/N so that τb ∝ ub approximately (see the blue and
red dashed curves in Figs. 8 and 11). This result is familiar
from Nye–Kamb sliding theory (Nye, 1969; Kamb, 1970)
for ice of constant viscosity (as is assumed here) sliding over
a rigid bed in the absence of cavitation: the confined cav-
ity modifies the shape of the lower boundary of sliding ice,
but because cavities do not expand to cover the entire bed
as ub/N→∞ (as would be the case for a fully permeable
bed; see Fig. 3 or 10a), that modification approaches a finite
limit for large ub/N , explaining why behaviour analogous to
Nye–Kamb sliding is obtained. Importantly, the modification
of the lower boundary of the ice depends on the precise loca-
tion of the confined cavity, and the approximate constant of
proportionality relating τb to ub depends on the location of
P : this explains, for instance, why there are distinct dashed
red and blue lines in Fig. 11.

The most dramatic changes in basal friction occur when P
is immediately in the lee of the largest bed bump. In that case,

τb/N will increase approximately linearly in ub/N until the
cavity connects with the remainder of the bed (see the solid
black curves in Figs. 8 and 11, with the discontinuity that
corresponds to the connection point marked as 1/N∗connect in
Fig. 8). Iken’s bound may be significantly exceeded during
that initial increase in ub/N . Once the connection with the
remainder of the bed occurs, basal drag τb/N drops dramat-
ically by factors of approximately 3 and 10 in Figs. 8 and
11, respectively. This is not particularly surprising, as the ex-
tension of the cavity drowns out much of the previously un-
cavitated bed topography, forcing the ice to flow over fewer
bed obstacles and thereby reducing form drag (that is, drag
caused by flow over basal topography).

Once connection has occurred, the friction law mimics the
friction law for a fully permeable bed. This remains the case
even if ub/N decreases again to the point where isolated cav-
ities form in the lee of some of the smaller cavities (com-
pare the dashed black curve for a fully permeable bed with
the solid red curve for a single isolated cavity in Fig. 8 and
with the solid blue curve for isolated cavities in Fig. 11): the
smaller obstacles remain drowned once these isolated cavi-
ties form, and form drag remains low.

Computation of steady-state friction τb (the dynamic case
being even more complicated; see e.g. de Diego et al., 2022
and also Gilbert et al., 2022) therefore requires not only
knowledge of ub and N , but also of the prior history of the
bed and of hydraulic connections that have been made. This
suggests that at least one additional state variable may need
to be included in the formulation of steady-state basal fric-
tion laws, possibly the cavitation ratio θ of Thøgersen et al.
(2019). The latter is defined as the fraction of the bed that
has become cavitated. In fact, the results here suggest that
changes in cavitation ratio may have a dominant effect on
basal friction: a significant and abrupt increase in cavitation
ratio occurs when a cavity extends or “connects” downstream
(Figs. 5 and 10), and that increase in cavitation ratio corre-
sponds to an equally abrupt, large drop in basal drag as dis-
cussed above.

In fact, a prototype parameterization for the friction laws
shown in Figs. 8 and 11 is

τb = C(θ)u
1/n
b +

C0Nu
1/n
b

(30Nn+ ub)
1/n , (17)

where the second term on the right-hand side is the regular-
ized Coulomb friction law of Schoof (2005) and Gagliardini
et al. (2007). Here n is the exponent in Glen’s law (Pater-
son, 1994), while C0 and 30 are constants determined by
the geometry of bed roughness. The first term on the right
reflects the fact that the friction laws in Figs. 8 and 11 be-
have as effectively linear relationships when there is an iso-
lated low-pressure region that has not become cavitated yet.
In Eq. (17), I propose capturing this behaviour through a lin-
ear term in u1/n

b (recall that n= 1 in Figs. 8 and 11), with the
slope of that linear term depending on the cavitation ratio θ .
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In order to emulate the behaviour of a fully permeable bed,
C(θ) needs to approach zero for cavitation ratios sufficiently
close to unity.

A friction law of this form in turn implies that subglacial
drainage models may need to incorporate a description of the
evolution of cavitation ratio. As I will show in Part 2, cavi-
tation ratio and mean cavity depth (the variable commonly
used to define cavity geometry in large-scale drainage mod-
els) are not simple proxies for each other, implying that the
introduction of cavity ratio into friction laws and drainage
parameterizations would indeed imply an increase in model
complexity.

There is a second complication in the definition of a fric-
tion law that deserves to be stressed for an impermeable bed:
the quantity that is commonly understood as “effective pres-
sure”, overburden minus water pressure at the bed, is not
uniquely defined but potentially varies from cavity to cavity.
That is, effective pressure varies over length scales that are
treated as microscopic in typical subglacial drainage models
because water pressure differs between cavities. In the ide-
alized model I use here, I define a unique “ambient drainage
system effective pressure” N in the permeable bed portions
P and am able to express a friction law in terms of N and ub
(albeit in the form of a multi-valued friction law) as is done
in Figs. 8 and 11.

The effective pressure in the connected portion of the
drainage system is likely to be the only useful effective pres-
sure that can be defined, as it will in general vary smoothly
in space and can therefore be modelled at the large scale, at
least in principle. That observation does underline, however,
the need to include additional degrees of freedom that cap-
ture the degree of cavitation in friction laws, since effective
pressure is then meaningless in a part of the bed that is fully
hydraulically isolated, with no drainage system access at all:
there may still be isolated cavities in that case, and their pres-
ence will affect basal friction as discussed above. To com-
pound matters, this situation also significantly complicates
any attempts to constrain such a friction law observationally:
while effective pressure in a connected drainage system can
in principle be measured by borehole access to the bed, the
presence and extent of isolated cavities at the bed are much
harder to determine.

5 Conclusions

Using a simple extension of an existing purely viscous model
for steady-state basal cavities in two dimensions, I have
shown that uncavitated regions of the bed can persist indef-
initely at low normal stress provided there is no drainage
pathway along which water can reach them. Such drainage
pathways are created under slow changes in forcing effec-
tive pressureN when that effective pressure reaches a critical
value. The creation of such connections is not reversible by
simply raising N back above its critical value, but requires

a greater increase in N and leaves behind an isolated cav-
ity. The formation of connections also leads to a significant
drop in basal friction that is likewise irreversible, since the
isolated cavity that is left behind by a subsequent increase
in N significantly reduces contact between the ice and bed
even when the hydraulic connection is closed again. To the
best of my knowledge, few if any of these phenomena are
included in current large-scale subglacial drainage models or
basal friction laws.

The main limitations to the work presented here derive
from its assumption of quasi-steady conditions and its restric-
tion to two dimensions. Dynamic cavity connections have
significantly richer behaviour than the quasi-steady solution
in the present paper suggests and are investigated in detail
in a companion paper. Three-dimensional bed topography by
contrast remains an open problem and holds the key to a more
complete understanding of hydraulic connectivity. Connec-
tions at the bed are presumably more likely to occur when
bed topography is three-dimensional: in a two-dimensional
setting, connectivity along the entire model domain is only
possible when ice–bed contact is lost completely, whereas
this is not the case in three dimensions. Similarly, contact of
the ice roof between two cavities in three dimensions does
not necessarily make them disconnected, whereas it does in
two dimensions.

Appendix A: Complex variable solution of the viscous
steady-state problem

A1 Complex variable formulation

The construction in Fowler (1986) and Schoof (2002, pp. 51–
54) allows the problem consisting of Eqs. (1), (3), (4), and (6)
to be written in the following form: let z= x+ iy, and find
an analytic function �(z) in the complex plane cut along the
real axis, satisfying

�(z)=�(z), (A1a)
− 2i

[
�+(x)−�−(x)

]
=−Nj for x ∈ Cj , (A1b)

�+(x)+�−(x)= ηubb
′′(x) for x ∈ C′, (A1c)

�(z)→ 0 as I(z)→±∞, (A1d)

where a prime indicates differentiation (in this case, with re-
spect to x), an overbar signifies complex conjugation, and
superscripts+ and− denote limits taken from above and be-
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low the real axis. The constraints (8) and (10) become

hC(x) > b(x) for x ∈ C, where (A1e)
�+(x)+�−(x)= ηubh

′′

C(x)

and hC(bj )= b(bj ), (A1f)
hC(cj )= b(cj ); (A1g)
− 2i

[
�+(x)−�−(x)

]
>Nj for bj − δ < x < bj (A1h)

and cj < x < cj + δ (A1i)

and some finite δ.
Let ζ = exp(i2πz/a) and ξ = exp(i2πx/a) . The as-

sumed periodicity of the solution ensures that �(z) can be
mapped one to one to G(ζ)=�(z), and similarly b2(ξ)=

b′′(x) and h2C(ξ)= h
′′

C(x) are one-to-one mappings. The
functions G, b2, and h2C satisfy

G(ζ)=G(1/ζ ), (A2a)
G(∞)= 0, (A2b)
− 2i

[
G+(ξ)−G−(ξ)

]
=−Nj for ξ ∈ 0j , (A2c)

G+(ξ)+G−(ξ)= ηubb2(ξ) for ξ ∈ 0′, (A2d)
G+(ξ)+G−(ξ)= ηubh2C(ξ) for ξ ∈ 0, (A2e)

where 0j , 0, and 0′ are Cj , C, and C′ mapped into the com-
plex ζ plane (where they become subsets of the unit circle),
and+ and− now indicate limits taken from within and with-
out the unit circle in the ζ plane.

The solution method followed here is that of Schoof
(2002, 2005), slightly modified to account for cavities at dif-
ferent effective pressures. I outline the procedure in full be-
low, adding detail omitted in the original account by Schoof
(2002, 2005).

A2 Cavity roof re-contact constraints

As in Schoof (2005), it is possible to conclude that the cav-
ity roof must disconnect and reattach tangentially and that it
suffices to impose this on n− 1 of n cavities since any valid
solution to Eq. (A2) ensures that re-contact is then also tan-
gential for the nth cavity. Consider the integral

I =

a∫
0

�+(x)+�−(x)dx

=ηub

{
n∑
j=1

[
h′C(cj )− b

′(cj )
]

−

n∑
j=1

[
h′C(bj )− b

′(bj )
]}
, (A3)

where I have used Eqs. (A1c) and (A1g). Enforcing
the contact condition (A1e) combined with the constraint
that hC(bj )= b(bj ), hC(cj )= b(cj ) implies that h′C(cj )≤

b′(cj ), h′C(bj )≥ b
′(bj ), and hence I ≤ 0. On the other hand,

transforming to the ζ plane,

I =
a

2πi

∫
0∪0′

G+(ξ)+G−(ξ)

ξ
dξ = 0 (A4)

on account of Cauchy’s theorem, since 0∪0′ is the unit circle
and therefore a closed contour, andG(0)=G(∞)= 0. I = 0
in turn implies that the cavity roof detaches and re-contacts
tangentially, so

h′C(cj )= b
′(cj ), h′C(bj )= b

′(bj ) (A5)

for j = 1, . . .,n.
In fact, tangential cavity roof detachment and re-contact

are required not only by Eq. (A4), but also by the original
construction of the model in Eq. (A1), which requires differ-
entiation of the original normal velocity condition v = ubb′

or v = ubh′C (Schoof, 2002, p. 44); recovery of the origi-
nal boundary condition in terms of antiderivatives of � con-
firms that no discontinuity between h′C and b′ can appear if
� is sectionally holomorphic in the sense of Muskhelishvili
(1992) (meaning it gives rise to an integrable stress field).

The point here is really to account for the independent
number of constraints on the solution that arise from the tan-
gential re-contact. In integrating Eq. (A1g) (or Eq. A2e), the
relevant continuity constraints can always be imposed on one
cavity end point (say, the upstream end), and integration for-
ward to the other cavity end point then creates a constraint
on the solution. Thus, integrating once, I obtain n equations
of the form

b′(cj )= b
′(bj )+

cj∫
bj

�+(x)+�−(x)dx, (A6)

where �±(x)=G±(exp(i2πx/a)). Integrating twice, I ob-
tain another n constraints

b(cj )= b(bj )+ b
′(bj )(cj − bj )

+

cj∫
bj

(cj − x)
[
�+(x)+�−(x)

]
dx. (A7)

Note, however, that one of the n constraints (A6) is redundant
for a valid solution G satisfying G(0)=G(∞)= 0, since
this ensures that I = 0 and the remaining equation of the
form in Eq. (A6) is automatically satisfied.

A3 Solution

Armed with this result, I can again follow the same solution
procedure as in Schoof (2002). G can be written in the form
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(Muskhelishvili, 1992)

G(ζ)=
1

2πi

[∑
j

∫
0j

−iNj/2
χ+(ξ)(ξ − ζ )

dξ

+

∫
0′

ηubb2(ξ)

χ+(ξ)(ξ − ζ )
dξ +P(ζ )

]
χ(ζ ), (A8)

where P is a polynomial and χ is a Plemelj function, holo-
morphic in the complex plane cut along 0′, on which it satis-
fies χ+(ξ)+χ−(ξ)= 0. There are multiple choices of χ that
give rise to a sectionally holomorphic solution G, differing
in the number and location of singularities at the cavity end
points x = bj and x = cj . As in Fowler (1986) and Schoof
(2005), I default to the choice

χ(ζ )=

n∏
j=1

(
ζ − ξbj

ζ − ξcj

)1/2

, (A9)

behaving as χ→ 1 as ζ →∞, with ξbj = exp(i2πbj/a)
and ξcj = exp(i2πcj/a). This choice of χ generally places
a stress singularity at cavity re-contact points x = cj but en-
sures that stress is continuous at detachment points x = bj .
That choice is not arbitrary: in Sect. A5 I confirm that stress
at x = bj must be continuous in order to simultaneously sat-
isfy Eqs. (A1e) and (A1i) and that, in general, the stress field
at x = cj will be singular when the same constraints are sat-
isfied locally near the re-contact point.

In order for G to satisfy G(∞)= 0 with χ given by
Eq. (A9), P ≡ 0 is necessary and sufficient. The remaining
constraint on G is that G(ζ)=G(1/ζ ); when the latter is
satisfied, G(0)=G(∞)= 0 follows automatically. Again as
in Schoof (2005, p. 618), it is possible to show that

χ+(ξ)=

{
−χ+(ξ)/χ(0) on 0′,
χ+(ξ)/χ(0) on 0, ,

ξ =
1
ξ
, dξ =−

1
ξ2 dξ. (A10)

Using these, it follows that

G(1/ζ )=G(ζ)−
1

2πi

∫
0′

ηubb2(ξ)

χ+(ξ)ξ
dξ

+

n∑
j=1

∫
0j

−iNj/2
χ+(ξ)ξ

dξ

χ(ζ ), (A11)

and the required constraint is to set the term in square brack-
ets to zero,

J :=

∫
0′

ηubb2(ξ)

χ+(ξ)ξ
dξ +

n∑
j=1

∫
0j

−iNj/2
χ+(ξ)ξ

dξ = 0. (A12)

Suppose that the Nj is prescribed. With P ≡ 0, the solu-
tion G in Eq. (A8) contains 2n unknown parameters in the
form of the cavity end-point locations ξbj and ξcj . Assum-

ing that G(ζ)=G(1/ζ ) so G++G− is real, I have 2n− 1
real constraints through Eqs. (A6) and (A7). This leaves a
single real constraint to close the system, and it therefore
remains to show that Eq. (A12) constitutes that single real
equation. Taking the complex conjugate of the left-hand side
of Eq. (A12) and using Eq. (A10), it is possible to show
that J = χ(0)J . Since χ(0)= exp[iπ

∑n
j=1(bj − cj−1)/a]

(Schoof, 2002, p. 98) and 0<
∑n
j=1(bj−cj−1)/a < 1, it fol-

lows that the real and imaginary parts of χ(0) are non-zero,
and hence R(J )= 0 implies I(J )= 0 and vice versa. Equa-
tion (A12) therefore constitutes a single real constraint, and
together with Eqs. (A6) and (A7) I have 2n real constraints
to determine the 2n cavity end points. Prescribing cavity vol-
ume Vj rather than effective pressure Nj does not lead to

further complications since putting Vj =
∫ Cj
bj
hc(x)dx simply

adds the required additional constraint to determine the cor-
respondingNj . The implementation of Eqs. (A12), (A6), and
(A7) (combined with additional constraints on Nj when cav-
ity volume is prescribed) follows the same numerical method
as in Schoof (2002).

A4 Arc length continuation

In practice, I introduce the smallest new cavity possible when
the inequality (7) is violated somewhere on P (note that this
is generally simple to do when P is a small region around
the location xP where normal stress has a local minimum in
the absence of cavitation). I then use an arc length contin-
uation to solve the system of equations in Eqs. (A6), (A7),
and (A12) while decreasing the effective pressure N , forcing
cavity end points to change continuously where they can.

Neighbouring cavities j and j + 1 can merge when cj =
bj+1 for some critical value of N , in which case I simply
deleted cj and bj+1 and created a single enlarged cavity with
end points bj and cj+1. Abrupt enlargement of cavities into a
previously uncavitated low-pressure region occurs when the
solution computed by arc length continuation violates the lo-
cal constraints in Eqs. (8) and (10) near a cavity end point.
This generally corresponds to a fold bifurcation along the so-
lution curve (plotting cavity end-point locations against N ).
N begins to increase again along the curve at such a fold,
signalling that the actual solution under a further decrease
in N is not continuous. I use arc length continuation to ex-
tend the solution further until I reach another solution with
the value of N at the fold bifurcation, but for which the in-
equalities (8) and (10) are satisfied. I treat that solution as
representing the enlarged cavity that results from decreasing
N past the fold bifurcation and discard solutions computed
by arc length continuation that do violate the inequalities in
Eqs. (8) and (10).

The Cryosphere, 17, 4797–4815, 2023 https://doi.org/10.5194/tc-17-4797-2023



C. Schoof: Subglacial cavities 4813

In order to capture the effect of cavity isolation, I compute
solutions by arc length continuation under increases in N ,
checking whether inequalities in Eqs. (8) and (10) are satis-
fied. An isolated cavity forms when the cavity roof contact
constraint (8) is violated in the interior of a cavity. In that
case, I introduce new contact points where re-contact occurs
and check whether either of the two new cavities created in
the process no longer straddles P . Such a cavity is then iso-
lated. I compute its volume and restart a computation by arc
length continuation while imposing Eq. (9) for that cavity.

A5 Cavity end-point singularities revisited

Here I show that continuous stress at cavity detachment
points and a stress singularity at reattachment points are
natural consequences of the inequality constraints (A1e)
and (A1i). I use the complex variable formulation deployed
above, but note that the same result could be obtained by
looking for a stream function solution of the Stokes flow
problem (Eq. 1) in terms of local polar coordinates centred
at x = bj or x = cj (see e.g. Fontelos and Muñoz, 2007).

Consider the original Hilbert problem (Eq. A1) locally, in
a neighbourhood of a cavity end point z= bj or z= cj . Con-
sider first the detachment point bj , and let

�(z)={
−iNj /4+ ηubb′′(bj )+F(z) for I(z) > 0
iNj /4+ ηubb′′(bj )+F(z) for I(z) < 0. (A13)

Then, in some sufficiently small open disc D around z= bj ,
F(z)= F(z) is holomorphic with a branch cut L along the
intersection of D with the half-line L0 given by y = 0, x <
bj . On that branch cut

F+(x)+F−(x)= ub[b
′′(x)− b′′(bj )]. (A14)

Assuming again that F is sectionally holomorphic in the disc
to ensure integrable stresses, the solutions in the disc take the
form (Muskhelishvili, 1992)

F(z)=8(z)+ 1
2πi

∫
L

ub
[
b′′(x)− b′′(bj )

]
χ+(x)(x− z)

dx

χ(z). (A15)

Here, χ(z)= (z− bj )−1/2 is analytic in the plane cut along
L0, behaving as χ(x)= 1/

√
x− bj for x > bj along the real

axis, and 8 is holomorphic in D. Assume b′′ is continuously
differentiable. Then the limiting values as y→ 0 of the in-
tegral in the curly brackets behave as a constant plus a term
ofO(|z−bj |3/2 log |z−bj |) (by a straightforward adaptation
of the derivation in Muskhelishvili, 1992, pp. 45–49), while
the analytic function 8 can be expanded as a Taylor series
around z= bj as8(z)= a0+a1(z−bj )+O(|z−bj |

2). To en-
sure that F(z)= F(z), a0 and a1 must be real. To a quadratic

error in (z−bj ), I simply have F(z)∼
[
a0+ a1(z− bj )

]
(z−

bj )
1/2, and I can evaluate

ηubh
′′

C =�
+(x)+�−(x)

∼ ηubb
′′(bj )+ 2[a0+ a1(x− bj )]/

√
x− bj

for x > bj , (A16)

p− 2η
∂v

∂x
=−2i

[
�+(x)−�−(x)

]
∼−Nj − 4

[
a0+ a1(x− bj )

]
/
√
bj − x ≥−Nj

for x < bj . (A17)

Since h′C = b
′ from Sect. A2, it follows that I must have

h′′C(x)≥ b
′′(bj ) for x > bj in order to ensure that hC > b in-

side the cavity. It follows that a0 ≥ 0, with a1 ≥ 0 if a0 = 0.
In order for the normal stress constraint (A17) to be satisfied,
ensuring the cavity remains sealed (by considering a local
solution, I can dispense with the machinery of requiring a
constraint only over a finite region of size δ as in Eq. A1i), I
see that I must have a0 ≤ 0 and a1 ≥ 0 if a0 = 0. The only
way that both of these constraints can be satisfied is that
a0 = 0 and a1 ≥ 0. This immediately ensures that normal
stress p− 2η∂v/∂x ∼−Nj + a1

√
bj − x is non-singular at

the detachment point.
The same approach can be used near a re-contact point, but

with different conclusions. Replacing bj by cj , I can still de-
fine F inside a small open disc D centred on z= cj through
Eq. (A13). F still satisfies Eq. (A14), but now on the in-
tersection L0 of D with the half-line L= {(x,0) : x > cj }.
Similarly, χ(z)= (z− cj )−1/2 is holomorphic in the plane
cut along L0, behaving as 1/

√
x− cj when the branch cut is

approached from the upper half-plane. F(z)= F(z) now re-
quires that I write 8(z)= i

[
a0+ a1(z− cj )

]
+O(|z− cj |

2)

with a0 and a1 real. The equivalent of Eq. (A16) and inequal-
ity (A17) becomes

ηubh
′′

C =�
+(x)+�−(x)

∼ ηubb
′′(cj )+ 2[a0+ a1(x− cj )]/

√
cj − x

for x < cj , (A18)

p− 2η
∂v

∂x
=−2i

[
�+(x)−�−(x)

]
∼−Nj + 4

[
a0+ a1(x− cj )

]
/
√
x− cj ≥−Nj

for x > cj . (A19)

With h′C = b
′ at x = cj , I must still have h′′C ≥ b

′′ for x < cj
to ensure that hC > b, and hence a0 ≥ 0 with a1 ≤ 0 if a0 = 0
from Eq. (A18). Satisfying the normal stress condition (A19)
requires that a0 ≥ 0, with a1 ≥ 0 if a0 = 0. In general I there-
fore expect a solution with a0 > 0 and a singular normal
stress of the form p− 2η∂v/∂x ∼ 4a0/

√
x− cj .
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