Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4675-2023
https://doi.org/10.5194/tc-17-4675-2023
Research article
 | 
09 Nov 2023
Research article |  | 09 Nov 2023

Mapping the extent of giant Antarctic icebergs with deep learning

Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond

Related authors

Anticipating CRISTAL: An exploration of multi-frequency satellite altimeter snow depth estimates over Arctic sea ice, 2018–2023
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904,https://doi.org/10.5194/egusphere-2024-2904, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021,https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019,https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Remote Sensing
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024,https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024,https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Insights into Greenland Ice Sheet Surface Roughness from Ku-/Ka-band Radar Altimetry Surface Echo Strengths
Kirk M. Scanlan, Anja Rutishauser, and Sebastian B. Simonsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2832,https://doi.org/10.5194/egusphere-2024-2832, 2024
Short summary
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024,https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary

Cited articles

Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR images, ISPRS J. Photogramm., 156, 247–259, https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019a. 
Barbat, M. M., Rackow, T., Hellmer, H. H., Wesche, C., and Mata, M. M.: Three Years of Near-Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR Imagery, J. Geophys. Res.-Oceans, 124, 6658–6672, https://doi.org/10.1029/2019JC015205, 2019b. 
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS J. Photogramm., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021. 
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Au- 55 tomated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning, Remote Sens., 11, 1–22, https://doi.org/10.3390/rs11212529, 2019. 
Download
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.