Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4675-2023
https://doi.org/10.5194/tc-17-4675-2023
Research article
 | 
09 Nov 2023
Research article |  | 09 Nov 2023

Mapping the extent of giant Antarctic icebergs with deep learning

Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond

Related authors

Enhanced neural network classification for Arctic summer sea ice
Anne Braakmann-Folgmann, Jack C. Landy, Geoffrey Dawson, and Robert Ricker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2789,https://doi.org/10.5194/egusphere-2025-2789, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Anticipating CRISTAL: An exploration of multi-frequency satellite altimeter snow depth estimates over Arctic sea ice, 2018–2023
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904,https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021,https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary

Cited articles

Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR images, ISPRS J. Photogramm., 156, 247–259, https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019a. 
Barbat, M. M., Rackow, T., Hellmer, H. H., Wesche, C., and Mata, M. M.: Three Years of Near-Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR Imagery, J. Geophys. Res.-Oceans, 124, 6658–6672, https://doi.org/10.1029/2019JC015205, 2019b. 
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS J. Photogramm., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021. 
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Au- 55 tomated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning, Remote Sens., 11, 1–22, https://doi.org/10.3390/rs11212529, 2019. 
Download
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Share