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Abstract. Icebergs release cold, fresh meltwater and terrige-
nous nutrients as they drift and melt, influencing the local
ocean properties, encouraging sea ice formation and biolog-
ical production. To locate and quantify the fresh water flux
from Antarctic icebergs, changes in their area and thickness
have to be monitored along their trajectories. While the lo-
cations of large icebergs are operationally tracked by manual
inspection, delineation of their extent is not. Here, we pro-
pose a U-net approach to automatically map the extent of
giant icebergs in Sentinel-1 imagery. This greatly improves
the efficiency compared to manual delineations, reducing the
time for each outline from several minutes to less than 0.01 s.
We evaluate the performance of our U-net and two state-of-
the-art segmentation algorithms (Otsu and k-means) on 191
images. For icebergs larger than those covered by the training
data, we find that U-net tends to miss parts. Otherwise, U-net
is more robust in scenes with complex backgrounds – ignor-
ing sea ice, smaller regions of nearby coast or other icebergs
– and outperforms the other two techniques by achieving an
F1 score of 0.84 and an absolute median deviation in iceberg
area of 4.1 %.

1 Introduction

Icebergs influence the environment along their trajectory
through the release of cold, fresh water mixed with terrige-
nous nutrients (Duprat et al., 2016; Helly et al., 2011; Jenk-
ins, 1999; Merino et al., 2016; Smith et al., 2007; Vernet et
al., 2012). The more they melt, the higher the impact. How-
ever, this melting is not linear but depends on the surround-
ing ocean temperature, current speed and many other vari-

ables that are hard to model or observe (Bigg et al., 1997;
Bouhier et al., 2018; England et al., 2020; Jansen et al., 2007;
Silva et al., 2006). Calculating fresh water input from satel-
lite observations is possible and can be partially automated.
However, it requires manual delineations of the iceberg out-
lines to calculate the changes in the iceberg area and to col-
locate altimetry tracks with a map of initial iceberg thick-
ness to estimate basal melting (Braakmann-Folgmann et al.,
2021, 2022). Here, we present an automated approach using
a U-net (Ronneberger et al., 2015) to segment giant Antarc-
tic icebergs in Sentinel-1 images and hence to delineate their
outline and area.

A number of methods including thresholding, edge-
detection and clustering techniques have been proposed to
automatically detect and segment icebergs in satellite radar
imagery. Early work by Willis et al. (1996) was based on a
thresholding technique and limited to certain iceberg sizes
of a few hundred metres and certain wind conditions. Later,
the constant false alarm rate (CFAR) thresholding technique
was applied to detect icebergs in the Arctic (Frost et al.,
2016; Gill, 2001; Power et al., 2001). Wesche and Dierk-
ing (2012) also used a threshold based on a K-distribution
fitted to observed backscatter coefficients of icebergs, sea
ice and open ocean followed by morphological operations.
Mazur et al. (2017) developed an algorithm for iceberg detec-
tion in the Weddell Sea based on thresholds for, e.g. bright-
ness, shape and size, at five scale levels applied to ENVISAT
(Environmental Satellite) ASAR (Advanced Synthetic Aper-
ture Radar) data. Apart from thresholding, edge-detection
techniques have been applied. Williams et al. (1999) used a
standard edge-detection technique followed by pixel bonding
(Sephton et al., 1994) applied to European Remote-Sensing
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Satellite-1 (ERS-1) images during austral winter to detect
and segment icebergs in East Antarctica. Silva and Bigg
(2005) extended this to ENVISAT images and improved the
algorithm by using another edge-detection technique. This
was followed by a watershed segmentation and a classifica-
tion step that takes area and shape into consideration but also
requires manual interventions. A clustering technique was
employed by Collares et al. (2018), who used the k-means al-
gorithm (Macqueen, 1967) to segment icebergs, which were
then manually tracked. Similarly, Koo et al. (2021) employed
a built-in technique, similar to k-means, using Google Earth
Engine to segment Sentinel-1 images and then applied an
incidence-angle-dependent brightness threshold to find ice-
bergs. They calculated the similarity of the distance to cen-
troid histograms of all detected icebergs to the first instance,
which was manually digitised, and then tracked one spe-
cific giant iceberg (B43). Finally, Barbat et al. (2019a) used
a graph-based segmentation and ensemble forest commit-
tee classification algorithm with a range of hand-crafted (se-
lected by a human operator) features.

Despite the quantity and variety of previous approaches, a
range of limitations has hindered the operational application
of an automated iceberg segmentation algorithm so far. One
limitation is that previous studies have focused on smaller
icebergs and performed worse for larger ones or were not
even applicable to them (Mazur et al., 2017; Wesche and
Dierking, 2012; Willis et al., 1996). Our work extends pre-
vious studies with the goal of delineating specific giant ice-
bergs. Giant icebergs make up a very small part of the total
iceberg population but hold the majority of the total ice vol-
ume (Tournadre et al., 2016), which makes them the most
relevant for fresh water fluxes. Apart from iceberg size, there
are many remaining challenges resulting from the variable
appearance of icebergs and the surrounding ocean or sea ice
in synthetic aperture radar (SAR) imagery (Ulaby and Long,
2014). The appearance of icebergs versus the surrounding
ocean or sea ice depends on their surface roughness, the di-
electric properties (e.g. moisture of the ice) and the satel-
lite incidence angle (Ulaby and Long, 2014). Icebergs with
dry, compact snow are usually bright targets in SAR images
(Mazur et al., 2017; Wesche and Dierking, 2012; Young et
al., 1998). While a calm ocean appears as a dark surface in
SAR images, a wind-roughened sea appears brighter depend-
ing on the relative wind direction versus the satellite viewing
angle (Young et al., 1998). Therefore, many studies report
degrading accuracies in high-wind conditions (Frost et al.,
2016; Mazur et al., 2017; Willis et al., 1996). Thin sea ice
has a similar backscatter to a calm sea (Young et al., 1998),
but rougher first-year ice already exhibits higher backscat-
ter. Multiyear ice can reach backscatter values overlapping
with the range of typical iceberg backscatter (Drinkwater,
1998). This explains why it is also mentioned that deformed
sea ice or sea ice in general leads to false detections (Koo et
al., 2021; Mazur et al., 2017; Silva and Bigg, 2005; Wesche
and Dierking, 2012; Willis et al., 1996). Surface thawing can

reduce the iceberg backscatter significantly (Young and Hy-
land, 1997). This means that those icebergs have the same
backscatter as or lower backscatter than the surrounding
ocean and sea ice, and appear as dark objects (Wesche and
Dierking, 2012, see our Fig. 2, last column). Some of the ex-
isting techniques are therefore limited to austral winter im-
ages (Silva and Bigg, 2005; Williams et al., 1999), and dark
icebergs remain a problem for all existing methods using
SAR images. Furthermore, giant tabular icebergs can exhibit
a gradient (Barbat et al., 2019a) due to variations in backscat-
ter with the incidence angle (Wesche and Dierking, 2012) or
appear heterogeneous due to crevasses (see Fig. 2, third and
last column). This also complicates segmentation and differ-
entiation from the surrounding ocean and sea ice. And finally,
clusters of several icebergs and iceberg fragments too close
to each other have been found to pose a problem (Barbat et
al., 2019b; Frost et al., 2016; Koo et al., 2021; Williams et
al., 1999). Our work aims to delineate icebergs in a variety
of environmental conditions as accurately as possible using a
deep learning technique.

Deep neural networks can encode the most meaningful
features themselves and are able to learn more complex non-
linear relationships. Deep neural networks therefore outper-
form classic machine learning techniques in most tasks (Le-
Cun et al., 2015; Schmidhuber, 2015). U-net is a neural net-
work that was originally developed for biomedical image
segmentation (Ronneberger et al., 2015). It has since been
applied to many other domains including satellite imagery
and polar science (Andersson et al., 2021; Baumhoer et al.,
2019; Dirscherl et al., 2021; Kucik and Stokholm, 2023; Mo-
hajerani et al., 2019, 2021; Poliyapram et al., 2019; Singh
et al., 2020; Stokholm et al., 2022; Surawy-Stepney et al.,
2023; Zhang et al., 2019). U-net works well with a few train-
ing examples, trains quickly and still achieves very good
results (Ronneberger et al., 2015). A comparison between
three network architectures (Deeplab, DenseNet and U-net)
for river ice segmentation found that U-net provided the best
balance between quantitative performance and good gener-
alisation (Singh et al., 2020). Baumhoer et al. (2019) used a
U-net architecture to automatically delineate ice shelf fronts
in Sentinel-1 images with good success (108 m average devi-
ation). The calving front to ocean boundary involves similar
conditions and challenges to an iceberg to ocean boundary.
Because of the many successful studies using U-net, includ-
ing one with similar challenges (Baumhoer et al., 2019), we
decided to also employ a U-net.

2 Data

This section describes the Sentinel-1 input data and genera-
tion of the manually derived outlines for training, validation
and testing. The goal is to derive the outlines of Antarctic ice-
bergs, which are large enough to receive a name and to be op-
erationally tracked. Therefore, we generate a binary segmen-
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tation map in which the biggest iceberg present in the image
is selected and everything else – including smaller icebergs,
iceberg fragments and adjacent land ice – is considered as
background. This approach differs from most previous work.
In most previous work the goal was to find all icebergs. In
contrast, our work is targeted to monitor changes in area of
these large icebergs but also to track how the icebergs ro-
tate and use their outline to automatically collocate altimetry
overpasses (Braakmann-Folgmann et al., 2022).

2.1 Sentinel-1 input imagery

The Sentinel-1 satellites measure the backscatter of the sur-
face beneath them using SAR. In contrast to optical im-
agery, SAR provides data throughout the polar night and
independent of cloud cover (Ulaby and Long, 2014). The
Sentinel satellites are an operational satellite system with
free data availability (Torres et al., 2012). Sentinel-1a (2014–
present) and Sentinel-1b (2016–2022) had a combined re-
peat cycle of 6 d (Torres et al., 2012), but the polar regions
are sampled more frequently. We use the Level-1 Ground
Range Detected (GRD) data at medium resolution. Depend-
ing on the geographic location around Antarctica, data are
collected in either interferometric wide (IW) or extra wide
(EW) swath mode. IW is a 250 km wide swath with 5× 20 m
native spatial resolution and EW is a 400 km wide swath with
20× 40 m native resolution. We use both modes depending
on availability. While HH-polarised (horizontal transmit and
horizontal receive) data are available across the Southern
Ocean, HV (horizontal transmit and vertical receive) data are
only available in some parts. As icebergs drift across these
acquisition masks and HH has been found to give the best re-
sults for iceberg detection (Sandven et al., 2007), we use the
HH-polarised data only. Should both modes become avail-
able across the Southern Ocean in the future, their collective
use might be advantageous. Icebergs and their surroundings
cause different changes in polarisation, which could be ex-
ploited using e.g. the HH /HV ratio.

We preprocess and crop the Sentinel-1 images before ap-
plying the segmentation techniques. Firstly, we apply the pre-
cise orbit file, remove thermal noise and apply a radiometric
calibration. We also multilook the data with a factor of 6 to
reduce speckle and image size, yielding a square pixel spac-
ing of 240 m. Then we apply a terrain correction using the
GETASSE30 (global earth topography and sea surface el-
evation at 30 arcsec resolution) digital elevation model and
project the output on a polar stereographic map with a true
latitude of 71◦ S. These preprocessing steps are conducted on
the Sentinel Application Platform (SNAP). All icebergs that
are longer than 18.5 km (10 nautical miles) or that encom-
pass an area of at least 68.6 km2 (20 square nautical miles)
are named and tracked operationally every week by the U.S.
National Ice Center (NIC). These are referred to as “giant”
icebergs (Silva et al., 2006). In addition, these and smaller
icebergs (longer than 6 km) are tracked by Brigham Young

University (Budge and Long, 2018), which releases daily
positions every few years. Therefore, we have a good esti-
mate of where each of these giant icebergs should be. We
can firstly download targeted Sentinel-1 images containing
these icebergs and secondly crop the images around the esti-
mated central position to a size of 256× 256 pixels. Hence,
every input image contains a giant target iceberg. Some im-
ages contain several icebergs and in this case we are only
interested in the largest one. To ensure that the largest ice-
bergs fit within the image, we rescale images of icebergs with
a major axis longer than 37 km (20 nautical miles). As the
NIC also provides estimates of the semimajor axes lengths,
we apply the rescaling based on this. The rescaled images
have a pixel spacing of 480 m instead. For all input images,
we scale the backscatter between the 1st and 99th percentile
to enhance the contrast. In this step, we also replace pixels
outside the satellite scene coverage with ones, and we cre-
ate a mask to discard the same pixels from the predictions.
The current implementation still requires the user to manu-
ally find and download Sentinel-1 images, but in principle
this could also be automated with a script. All preprocessing
steps only rely on position and length estimates from NIC
rather than actual decisions that a user has to make, paving
the way for a fully automated end-to-end system.

The overall dataset consists of 191 images, showing seven
giant icebergs: B30, B31, B34, B35, B41, B42 and C34. The
names are determined by the NIC and indicate which quad-
rant in Antarctica the iceberg calved from (A–D) followed
by a number (e.g. B30 was the 30th iceberg on their record
that calved between 90–180◦W). The seven icebergs used in
our study are between 54 and 1052 km2 in size. B30 is the
only iceberg that is initially longer than 37 km, so we rescale
the first 27 images to 480 m resolution, until its length drops
below 37 km. A further two images of this iceberg are then
used at 240 m resolution (Fig. 4 first column shows images
of B30 at 480 m resolution and the last one at 240 m reso-
lution). Spatially, we cover different parts of the Southern
Ocean including the Pacific and Indian Ocean side with a
focus on the Amundsen Sea (see Fig. 1). Temporally, our im-
ages span the years of 2014–2020 and are scattered across all
seasons. For each iceberg, the individual images are roughly
1 month apart. Far higher temporal sampling would be pos-
sible in terms of satellite image availability, but we aim to
cover a wide range of environmental conditions, seasons, and
iceberg shapes and sizes, which are highly correlated in sub-
sequent images. Table 2 gives the exact number of images
per iceberg.

2.2 Grouping of input images according to
environmental conditions

We visually group all input images into different categories
to assess the performance in different potentially challenging
conditions. These groups are open ocean, sea ice, fragments,
other icebergs, coast and dark icebergs (Fig. 2 shows one
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Figure 1. Spatial and temporal coverage of our dataset. The trajectories (by Budge and Long, 2018) of the seven selected icebergs are
colour-coded according to time and the black squares indicate the locations of the images used in this study.

example of each). We class an image as dark iceberg if the
iceberg appears as dark or does not stand out from the back-
ground (Wesche and Dierking, 2012). Images are grouped
into the coast category if they contain nearby ice shelves or
glaciers on the Antarctic continent. Due to very similar phys-
ical conditions, ice shelves and icebergs are hard to differen-
tiate. The category of other icebergs was introduced, because
in some cases, several giant icebergs drift very close to each
other and are (partially) visible in our cropped images. If an-
other iceberg of similar size is present, the algorithms might
pick the wrong iceberg and we class such images as other
icebergs. There is also one case where a bigger iceberg is
partially visible, but we are aiming to segment the largest
iceberg that is fully visible (Fig. 5h). We assign images to
the fragments category if they exhibit fragments close to the
iceberg. Fragments occur frequently in the vicinity of ice-
bergs, as icebergs regularly calve smaller fragments around
their edges. When the fragments are close to the main ice-
berg, they are easily grouped together (Koo et al., 2021). The
last challenge is sea ice. Young and flat sea ice usually ap-
pears homogenous and dark, meaning it does not pose a prob-
lem. However, older, ridged sea ice and other cases where the
background appears grey rather than black with significant
structure (Mazur et al., 2017) are grouped into this category.
Images are grouped into the open ocean category if no ob-
vious challenge is apparent to us. This includes cases where
the sea ice is not visually apparent (i.e. young and flat) and
the background appears as dark and relatively homogenous
or where fragments are further away from the iceberg. If sev-

eral challenges are present (e.g. if coast and sea ice are visi-
ble), we assign the image to the most relevant group. Table 3
gives the number of images per category.

2.3 Manual delineation of iceberg perimeters

Although the goal is to develop an automated segmentation
technique, manual delineations of iceberg extent are required
to train the U-net and for the evaluation of all methods. We
manually digitise the iceberg perimeter in all 191 images us-
ing Geographic Information System (GIS) software to yield
a polygon. The accuracy of such manual delineations is esti-
mated to be 2 %–4 % of the iceberg area (Bouhier et al., 2018;
Braakmann-Folgmann et al., 2021, 2022). We then create a
binary map of the same size as the input image, where pixels
within the manually derived polygon are defined as iceberg
and everything else as background, to allow a rapid evalua-
tion of performance. Fig. 2 shows some examples of input
images and their corresponding segmentation maps based on
the manual outlines. We regard the manually derived outlines
as the most accurate. Therefore, we use these binary maps to
train our neural network and to evaluate all automated seg-
mentation techniques. When the area deviation of our auto-
mated segmentation techniques drops below 2 %–4 %, their
prediction might be more accurate than the manual delin-
eation. In any case, automated approaches are advantageous
over manual delineations – especially when rolled out for nu-
merous icebergs or in operational applications – as each out-
line takes several minutes to digitise manually.
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Figure 2. Examples of input images (top row) and segmentation maps based on manually derived delineations (bottom row) in different
environmental conditions. From left to right these are B31 in open ocean, B41 surrounded by sea ice, B42 with nearby fragments, C34 and
another similar sized iceberg, B41 close to the coast and B30 appearing dark.

3 Methods

This section describes the implementation of two standard
segmentation methods and our U-net architecture. We also
introduce the different performance metrics used to evaluate
our results.

3.1 Iceberg segmentation with k-means and Otsu
thresholding

We implement two standard segmentation techniques as a
baseline: Otsu thresholding and k-means. In both cases, we
mask out the areas that had no satellite scene coverage by
setting them to zero (black). For the first segmentation tech-
nique, we smooth the input image with a 5×5 Gaussian ker-
nel. Then we apply the Otsu threshold (Otsu, 1979), yielding
a binary image. The Otsu threshold is determined automati-
cally based on the grey-scale histogram of the image so that
the within-class variance is minimised. To find an iceberg,
we apply connected component analysis to the binary im-
age and select the largest component. We also experimented
with other thresholding techniques including adaptive mean
and adaptive Gaussian thresholding, but we found that the
Otsu threshold gave the best results (for the B42 iceberg we
found F1 scores of 0.58, 0.67 and 0.84). Although different
thresholding techniques have been proposed for iceberg de-
tection (Frost et al., 2016; Mazur et al., 2017; Power et al.,
2001; Wesche and Dierking, 2012; Willis et al., 1996), to our
knowledge none of them have used the Otsu method. The
second technique is k-means (Macqueen, 1967), with k = 2.
K-means is a clustering technique which divides the data
into k clusters iteratively. The initial cluster centres are cho-
sen randomly and each observation is assigned to the near-
est cluster. Then, in each iteration, new centroids (means)
are calculated per cluster and all observations are assigned
to the nearest cluster again. We run the algorithm for 20 it-
erations. We also repeat this 50 times with different initial-
isations and take the result with the best compactness. Af-

terwards, we perform a connected component analysis and
select the largest component. K-means and a variation of it
have also been applied to track selected icebergs by Collares
et al. (2018) and Koo et al. (2021), respectively. Both our
standard segmentation techniques are implemented using the
OpenCV library (Bradski, 2000) for Python.

3.2 Iceberg segmentation with U-net

We implement a U-net architecture to segment Sentinel-1 in-
put images into the largest iceberg and background, which is
based on the original U-net (Ronneberger et al., 2015) with
some modifications. The input images are 256× 256 one-
channel backscatter images (as Sect. 2.1. describes and Fig. 2
shows). The U-net is composed of an encoder that produces a
compressed representation of the input image and a decoder
that constructs a segmentation map from the compressed en-
coding with the same spatial resolution as the input (Fig. 3).
The encoder uses a number of convolutional and pooling lay-
ers to generate feature maps at increasing levels of abstrac-
tion and spatial scale. The decoder uses further convolutional
layers and upsampling to construct the required segmentation
map. Cross-links convey feature maps from different spatial
scales in the encoder to the respective decoder stage, where
they are combined with contextual feature maps from the de-
coder layer below. This allows U-net to produce accurate seg-
mentations whilst also considering contextual features. We
use padding in the convolutions and pooling operations, so
that the feature maps remain the same size as the input at
each level (spatial scale) and are reduced by 50 % in height
and width between encoder levels. We also use depth-wise
separable convolutions (Chollet, 2017), which are more ef-
ficient. Furthermore, we added a dropout of 0.3 in between
the two convolutions per level to avoid overfitting (Srivastava
et al., 2014). We also added residual connections to aid the
learning process and increase the accuracy (He et al., 2016).
The outputs are one-channel 256× 256 arrays, representing
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Figure 3. Modified U-net architecture as used in this paper.

the probability that each pixel belongs to the iceberg class.
During training, these output maps are compared with the
segmentation maps from our manually derived outlines to al-
ter the network parameters accordingly. When evaluating the
validation and test data output, we convert the probability
map to a binary output, where 1 corresponds to the iceberg
class and 0 corresponds to the background (everything else),
by thresholding it at 0.5. As we are only interested in the
largest iceberg, smaller icebergs and iceberg fragments are
removed by also applying a connected component analysis
and selecting the largest component (Fig. 3).

We train and evaluate the network using cross-validation.
This means that we train seven different neural networks and
always retain the images of one iceberg for testing as an in-
dependent dataset. In the end, it allows us to evaluate the
performance of our U-net across all seven icebergs, as each
of them is used as (unseen) test data for one of the networks.

The exact number of test images varies, as we have between
15 and 46 images per iceberg (Table 2). Although the im-
ages are roughly 1 month apart and cover a wide range of
seasons and surroundings overall (e.g. near the calving front,
surrounded by sea ice and within open ocean), we find that
consecutive images of the same iceberg are often similar –
concerning iceberg shape, size and appearance as well as
the surrounding. Therefore, we do not mix training and test
data. On the other hand, and for the same reason, we find
that it stabilises the training process if we draw training and
validation data from the same set of icebergs. To determine
when to stop the learning process to avoid overfitting, we
use 24 images as validation data. Depending on which ice-
berg was picked for testing, this leaves between 121 and 152
images for training. Other hyperparameters like network ar-
chitecture, number of layers, optimiser, initial learning rate,
loss function and batch size are the same for all seven net-
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works and were set using the B42 iceberg as test data. We
also tried to augment the data by flipping the training images
vertically and horizontally, leading to a tripling of the train-
ing data, but we found a slightly degraded performance (F1
score for the B42 iceberg used as test data is reduced from
0.88 to 0.79). We believe that this is because consecutive im-
ages already show a similar iceberg shape and size in similar
conditions, but with varying rotation and translation through
the natural drift. Therefore, in this case data augmentation
does not help but rather leads to overfitting. We train the net-
works end-to-end using a binary cross-entropy loss function
and a batch size of 1. Higher batch sizes had little impact on
the performance and run time. The Adam optimiser (Kingma
and Ba, 2015) is employed with an initial learning rate of
0.001. The learning rate is halved when the validation loss
has not decreased for eight consecutive epochs. Training is
stopped when the validation loss has not improved for 20
epochs. In practice, this means that the networks are trained
for 57–193 epochs. The implementation is done in Python us-
ing Keras (Chollet et al., 2015). Training takes up to 20 min
on a Tesla P100 GPU with 25 GB RAM (Google Colab Pro).
Once trained, U-net can be applied without any user inter-
vention and the prediction for 24 images takes 0.2 s.

3.3 Performance metrics

We evaluate the performance of the three methods compared
with the manual delineations using a range of metrics. True
positives (TP) are all correctly classified iceberg pixels and
true negatives (TN) are all correctly classified background
pixels. False positives (FP) are pixels that were classified
as iceberg pixels but belong to the background according
to manual delineations. And false negatives (FN) are ice-
berg pixels in the manually derived segmentation map, which
the algorithm has missed and erroneously classified as back-
ground. These are the bases for most evaluation metrics in-
cluding the overall accuracy, the F1 score (also known as dice
coefficient), misses (also known as the false negative rate)
and false alarms (also known as the false positive rate). The
detection rate is equal to the iceberg class accuracy and can
be derived from 1 minus the misses; hence, we do not list it
separately. The F1 score is a number between 0 and 1, where
1 is best and means that the model can successfully identify
both positive and negative examples. In the case of a large
class imbalance, the F1 score is much more meaningful than
the overall accuracy. The iceberg class makes up only 5 %
of all pixels, so we focus on the F1 score but list the overall
accuracy for completeness. Except for the F1 score, all mea-
sures are given in percentages. In addition to these metrics
commonly used to evaluate segmentation algorithms, we also
examine the accuracy of the resulting area estimates ai . We
calculate the mean absolute error (MAE) in area, the mean
error (area bias) and the median absolute deviation (MAD)
in area. We focus on the MAD, as it is robust to a few com-
plete failures. However, some previous studies (Barbat et al.,

2021; Mazur et al., 2017) have reported the MAE in area
but most (Silva and Bigg, 2005; Wesche and Dierking, 2012,
2015; Williams et al., 1999) have reported the area bias, so
we also list these for completeness. Areas ai and αi are cal-
culated as the sum of all iceberg pixels in the prediction and
manually derived segmentation map, respectively, multiplied
by the pixel area (240× 240 m or 480× 480 m). All area
deviations are relative deviations and given as percentages
compared with the iceberg area in the manually derived seg-
mentation map. Due to the large size range (54–1052 km2),
relative numbers are more meaningful. We also calculate the
standard deviation for each metric. Only the MAD is given
with the 25 % and 75 % quantiles instead.

F1 =
2TP

2TP+FN+FP
(1)

Overall accuracy=
TN+TP

TN+TP+FN+FP
(2)

Misses=
FN

FN+TP
(3)

False alarms=
FP

FP+TN
(4)

MAE=
1
n

n∑
i=1

|ai −αi |

αi
(5)

Area bias=
1
n

n∑
i=1

ai −αi

αi
(6)

MAD=median
(
|ai −αi |

αi

)
(7)

4 Results and discussion

In this section, we present and discuss the results from the
three different approaches (U-net, Otsu and k-means). The
best visualisation of the results can be found in the supple-
mentary animations (Braakmann-Folgmann, 2023), showing
all 191 images with the predicted iceberg outlines from all
methods plotted on top. There is one animation per iceberg.
Our analysis in the following is based mainly on statistics,
but we also show some examples to allow for a visual, qual-
itative assessment. After an overall analysis, we assess the
performance of the approaches on each iceberg and evaluate
the impact of the iceberg size and different environmental
conditions in the scenes. Finally, we compare our results to
previous studies.

4.1 Performance of the three methods

Comparing the performance of all three techniques, we find
that U-net outperforms Otsu and k-means in most metrics. It
achieves a significantly higher F1 score (0.84 compared to
0.62, Table 1) and generates much fewer false alarms (0.4 %
instead of 4.7 % and 5.2 %). On the other hand, both stan-
dard segmentation methods have fewer misses than U-net
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Table 1. Performance metrics with standard deviations of U-net, Otsu and k-means across all test datasets (191 images). The median absolute
area deviation (MAD) is given with 25 % and 75 % quantiles instead of standard deviation. Arrows indicate whether high (up) or low (down)
numbers are desirable. The best score per metric is highlighted in bold.

F1 score Overall accuracy Misses False alarms MAE in area Area bias MAD in area
↑ [%] ↑ [%] ↓ [%] ↓ [%] ↓ [%] ↓ [%] ↓

U-net 0.84 ± 0.30 99 ± 2 21 ± 32 0.4 ± 0.3 15 ± 26 −5 ± 29 4.1 [2.1–12.1]
Otsu 0.62± 0.34 95± 13 9± 28 5.2± 0.3 170± 490 170± 490 3.6 [2.0–14.9]
k-means 0.62± 0.33 95± 12 13± 28 4.7± 0.3 150± 460 150± 460 5.1 [2.2–13.8]

(9 % and 13 % compared to 21 %). On this metric Otsu scores
the best. In terms of iceberg area, the predictions by U-net
are much closer to the manually derived outlines in terms
of MAE and bias. Otsu and k-means clearly suffer from a
few total failures with over 100 % deviation which bias these
metrics in their cases. The MAD, which is less sensitive to
such outliers, is similar for the three methods, with Otsu scor-
ing the best (3.6 %), followed by U-net (4.1 %) and k-means
(5.1 %). The 25 % quantiles are very similar for all three
methods (2.0 %, 2.1 % and 2.2 %, respectively). On the 75 %
quantiles, U-net achieves slightly better results (12.1 % area
deviation, compared to 13.8 % and 14.9 % for k-means and
Otsu, respectively). This means that 75 % of all U-net pre-
dictions deviate from the manually derived area by 12.1 % or
less. Overall, U-net scores better in most categories but tends
to miss parts and misclassify iceberg pixels as background.

4.2 Impact of iceberg size

Next, we evaluate how U-net performs for each of the seven
different giant icebergs (Table 2, shaded in grey and Fig. 4)
to assess the impact of the chosen test dataset and different
iceberg sizes. Here, we find that B34 gives the best results.
The number of images for this iceberg is the smallest (15 im-
ages), meaning that there are more images left for training
and the background is usually not too challenging. B41 gives
the lowest F1 score. This dataset is the largest one, contain-
ing 46 images, and hence leaves the lowest number of images
for training. Furthermore, B41 remains in close proximity to
its calving position for over a year, which means that the first
13 images contain a significant amount of coast – often di-
rectly next to the iceberg (see Fig. 4’s first three images or
the supplementary animation for all images). In these cases
all techniques pick the coast rather than the iceberg (as dis-
cussed later). The highest MAD and miss rate occur for ice-
berg B31. Because the images of B30 – our largest iceberg
– are resized, this means that B31 appears largest in the im-
ages. Therefore, we believe that the large size of the iceberg,
which U-net has not seen in the training data, causes U-net to
miss parts of the iceberg (Figs. 4 and 5b, f). This is supported
by the fact that U-net misses large parts of B31 in the begin-
ning (first few images in Fig. 4) then misses smaller parts,
and once the iceberg has decreased to a size similar to other
icebergs, U-net is suitable (last four images of B31 in Fig. 4).

In general, we find quite variable performance depending on
which iceberg is retained as test data. This is because the
same challenges (e.g. iceberg size, shape and surrounding)
occur in subsequent images of the same iceberg, even when
they are 1 month apart (best seen in the supplementary an-
imations). It is also the reason why we decided to evaluate
the methods using cross-validation, as this makes the analy-
sis less sensitive to the choice of a single iceberg as test data.

Also for Otsu and k-means the performance varies a lot
depending on which iceberg is chosen as test data. The F1
scores for Otsu range from 0.20–0.91, being the lowest for
C34 and the highest for B31. Similarly, k-means also reaches
the lowest F1 score of 0.23 for C34 and the highest F1 score
of 0.93 for B31. Compared to that, U-net is more consistent,
reaching F1 scores between 0.68 and 0.97, but still exhibits
significant variability. The fact that Otsu and k-means score
so well for B31 also indicates that this dataset is not hard per
se. We rather suspect that we are challenging U-net too much
when the iceberg in the test data is bigger than any iceberg
in the training data. Neural networks are known to struggle
with a domain shift, where the test data are from a shifted
version of the training data distribution, and even more with
out-of-domain samples from outside the training data distri-
bution (Gawlikowski et al., 2021). Both are caused by in-
sufficient training data, not or barely covering these exam-
ples. Therefore, we recommend expanding the training data
before operationally applying U-net to icebergs larger than
those covered by the current training dataset. In contrast, ice-
berg B41, where U-net reaches the lowest F1 score, poses
an even greater problem to the other algorithms, meaning
that this dataset is actually challenging. Finally, we observe
that U-net achieves the lowest false alarm rate for each ice-
berg. Otsu generates the most false alarms (highest rate for
six out of seven icebergs) but also achieves the lowest miss
rate for four out of seven icebergs. Except for B31, U-net
consistently achieves the highest F1 score. In terms of MAD
in area k-means and U-net score the best for three out of the
seven icebergs each.

4.3 Impact of different environmental conditions

Grouping the images according to the surrounding environ-
mental conditions (see Sect. 2.2.) allows us to judge how well
each method can deal with the respective challenge (Fig. 5,
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Table 2. Performance of the three methods for each test dataset (iceberg). The number of images per iceberg and their minimum and
maximum size are also given. Note that most images of B30 are rescaled, so it appears smaller in the images. Arrows indicate whether high
(up) or low (down) numbers are desirable. The best scores per iceberg and metric are highlighted in bold.

F1 score Misses False alarms MAD in area
↑ [%] ↓ [%] ↓ [%] ↓

B30 U-net 0.90 15 0.3 3.3
29 images Otsu 0.77 9 3.2 2.7
463–1052 km2 k-means 0.79 12 2.4 2.4

B31 U-net 0.79 34 0.2 13.6
32 images Otsu 0.91 5 1.6 3.0
79–518 km2 k-means 0.93 6 1.0 1.9

B34 U-net 0.97 2 0.2 2.1
15 images Otsu 0.83 1 1.7 1.2
97–241 km2 k-means 0.80 8 1.6 8.3

B35 U-net 0.94 2 0.3 6.9
21 images Otsu 0.66 9 2.3 7.4
62–158 km2 k-means 0.63 10 2.5 4.0

B41 U-net 0.68 33 0.7 3.5
46 images Otsu 0.27 13 10.5 3.8
54–116 km2 k-means 0.29 11 10.1 5.6

B42 U-net 0.88 13 0.6 5.4
24 images Otsu 0.84 6 1.7 8.9
142–235 km2 k-means 0.76 28 1.0 18.7

C34 U-net 0.81 20 0.4 3.7
24 images Otsu 0.20 36 10.1 4.3
61–101 km2 k-means 0.23 32 9.1 5.2

Table 3). Open ocean makes up most of the images (46 %)
and all methods perform very well with F1 scores of 0.93–
0.95 and MAD in area of 2.4 %–3.2 %. The Otsu threshold
performs the best, but the differences between the methods
are very small. The two sample images (Fig. 5a, b) also il-
lustrate that the only problem in this category is that U-net
generally tends to miss parts of B31 rather than open ocean
in itself posing a problem.

Sea ice occurs in 14 % of our images. Overall, U-net
achieves the best F1 score (0.88 compared to 0.72 and 0.74),
but the Otsu threshold gives a slightly better MAD in area
(4.3 % rather than 4.8 % and 5.4 %). Visually, the U-net pre-
dictions seem to be the most robust, as sea ice is discarded
reliably. In contrast, the two other methods sometimes con-
nect patches of sea ice to the iceberg (Fig. 5c) but also work
fine in other cases (Fig. 5d).

Iceberg fragments drifting in direct proximity to the target
iceberg were found in 24 % of our images. Overall, k-means
scores best in this category with a MAD of 5.7 % compared
with 5.9 % and 6.9 %. In terms of the F1 score, Otsu and
k-means both reach 0.94, whereas U-net only reaches 0.85.
Visually, there are a few instances where Otsu connects more
fragments to the iceberg than k-means and U-net (Fig. 5e,

f). This might be due to the Gaussian smoothing that we ap-
ply before the thresholding. We do not apply this step before
k-means and find that k-means tends to rather oversegment
images, leaving small holes on the inside (Fig. 5d, e). How-
ever, in the case of fragments, this turns out to be beneficial,
as it allows k-means to reliably separate fragments from ice-
bergs, even when they are very close by. The problem for
U-net does not seem to be the actual fragments themselves,
as it rarely connects any fragments to the iceberg (Fig. 5e, f).
However, the images containing fragments are mostly from
the large B31 and B42 icebergs, where U-net struggles due to
their large extent. This can also be seen from the fact that U-
net and k-means both only generate 0.4 % false alarms (frag-
ments erroneously connected to the iceberg), but U-net has a
much higher miss rate.

In 3 % of all images, another similar sized or bigger ice-
berg is (partially) visible. U-net scores the best in all cate-
gories, by a large margin, yielding an F1 score of 0.96 com-
pared to 0.12 and 0.11 and a MAD in area of 5.9 % com-
pared to 11 % and 110 %. Visually, it also becomes clear that
U-net reliably picks the target iceberg and discards any other
ice, while Otsu and k-means often pick the wrong iceberg or
connect the iceberg with other ice (Fig. 5g, h). However, con-
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Figure 4. U-net-derived iceberg outlines (red) plotted on top of the input images for 10 images per iceberg (columns). We always include the
first and last image from each time series and sample the others equally in between. As the number of images per iceberg ranges from 15–46,
this means that the images of B34 are 1–2 months apart, while the images for B41 are 5 months apart in this figure. The full time series and
results of all methods can be viewed in the supplementary animations (one per iceberg).

sidering iceberg shape and size in a tracking scenario could
help mitigate this phenomenon (Barbat et al., 2021; Collares
et al., 2018; Koo et al., 2021).

The coast is present in 8 % of all images and U-net outper-
forms the other techniques but also struggles in certain cases.

The F1 score is 0.34 for U-net and 0.12 and 0.11 for Otsu and
k-means, respectively. While U-net achieves a MAD of 18 %,
the other methods yield over 1000 % each. Figure 5j illus-
trates what is happening in these cases. If too much coast is
present, all algorithms pick the coast rather than the iceberg
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Figure 5. Examples of input images (first column) and segmentation maps generated by U-net (second column), Otsu (third column), k-means
(fourth column) and manual delineations (last column). We picked these images for illustration to cover each category of environmental
conditions twice and to include all icebergs (labelled on the right).
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Table 3. Performance of the three methods in different environmental conditions. The first column also indicates how often these conditions
occur in our dataset. Arrows indicate whether high (up) or low (down) numbers are desirable. The best values per category and metric are
highlighted in bold.

F1 score Misses False alarms MAD in area
↑ [%] ↓ [%] ↓ [%]↓

Open ocean U-net 0.93 11 0.1 2.8
(46 %) Otsu 0.95 2 0.4 2.4

k-means 0.95 4 0.3 3.2

Sea ice U-net 0.88 14 0.3 4.8
(14 %) Otsu 0.72 3 2.4 4.3

k-means 0.74 11 1.7 5.4

Fragments U-net 0.85 21 0.4 6.9
(24 %) Otsu 0.94 2 0.7 5.9

k-means 0.94 7 0.4 5.7

Other icebergs U-net 0.96 6 0.0 5.9
(3 %) Otsu 0.18 66 7.7 110

k-means 0.10 86 5.7 11

Coast U-net 0.34 68 1.8 18
(8 %) Otsu 0.12 38 29.5 1200

k-means 0.11 44 28.6 1200

Dark icebergs U-net 0.12 92 1.1 96
(5 %) Otsu 0.12 54 34.3 450

k-means 0.11 62 30.5 460

(and this is much larger than the iceberg, hence 1000 % de-
viation). However, U-net discards smaller parts of the coast
around the image edges (Fig. 5i). On the one hand, this is
because of the sliding convolution window and, on the other
hand, because U-net learns that the iceberg is usually in the
centre (as we crop the images around the estimated position
from operational iceberg tracking databases). Hence, U-net is
able to correctly pick out the iceberg if not too much coast is
present. For the same reason, it is easier for U-net to discard
other icebergs at the image edges. Interestingly, even when a
lot of coast is present, U-net does not pick the full coast but
predicts either nothing or a small – almost iceberg-shaped –
part of the coast (Fig. 5j). This could indicate that U-net even
learns that only ice that is fully surrounded by water is an
iceberg. A possible strategy to avoid misclassifications due
to large amounts of coast would be the inclusion of a land
mask (Barbat et al., 2019a; Collares et al., 2018; Frost et al.,
2016; Mazur et al., 2017; Silva and Bigg, 2005). However,
ice shelves and glaciers advance and retreat regularly; espe-
cially the calving of icebergs themselves significantly alters
the land mask. Thus, just after calving, the iceberg would be
within the former land mask and would not be picked up. A
potential solution could be to always use the latest frontal po-
sitions from Baumhoer et al. (2023) as a dynamic land mask.

The last category of dark icebergs is the hardest and makes
up 5 % of the overall dataset. In these cases, all methods fail
with F1 scores of 0.11–0.12 and the lowest MAD in area of

96 %. Again, it is interesting that U-net predicts either very
small patches or nothing at all in these cases (Fig. 5k, l),
while the other two methods segment large areas of brighter-
looking ocean. Potentially, U-net could learn to segment dark
icebergs with a lot more training examples, but we only had
10 such images in our overall dataset. Finally, we would like
to stress that the occurrence of these different environmental
conditions will vary and our dataset is not necessarily rep-
resentative of all icebergs. We also find that the influence of
iceberg size and environmental conditions cannot always be
disentangled, as subsequent images of the same iceberg are
often similar and the different environmental conditions are
not spread equally across the different test datasets (individ-
ual icebergs). Therefore, the fact that U-net misses parts of
B31 also impacts its performance in mainly the fragments
and open ocean category. Apart from these misses, U-net
scores at least as well as the other methods in the open ocean
and fragments categories (lower or same false alarm rate)
and outperforms them in the sea ice, other icebergs and coast
categories. Dark icebergs and larger areas of coast remain a
problem for all methods.

4.4 Comparison with previous studies

Previous studies state different accuracy measures. And due
to the slightly different goal of detecting all icebergs in a
scene rather than finding one giant iceberg and accurately

The Cryosphere, 17, 4675–4690, 2023 https://doi.org/10.5194/tc-17-4675-2023



A. Braakmann-Folgmann et al.: Mapping the extent of giant Antarctic icebergs with deep learning 4687

predicting its outline and area, they are not directly com-
parable. Two studies employ the k-means algorithm (Col-
lares et al., 2018) or a variation of it (Koo et al., 2021), so
we have indirectly compared U-net to them, though none of
them report any of our accuracy measures. Many of the pre-
vious approaches rely on some form of thresholding (Frost et
al., 2016; Gill, 2001; Mazur et al., 2017; Power et al., 2001;
Wesche and Dierking, 2012; Willis et al., 1996). We some-
how covered these methods by comparing U-net to the Otsu
threshold, but the exact approaches vary and none of them
have applied the Otsu threshold. Two of the threshold-based
methods report estimates for their area deviations. Wesche
and Dierking (2012) state that the iceberg area was over-
estimated by 10± 21 % with their approach. In a follow-
ing study, they find that for the correctly detected icebergs
13.3 % of the total area was missing (Wesche and Dierking,
2015), meaning a bias in the opposite direction. Mazur et
al. (2017) find positive and negative area deviations of±25 %
on average. For edge-detection-based algorithms, Williams
et al. (1999) find an overestimation of the iceberg area by
20 % and the approach of Silva and Bigg (2005) yields an
underestimation of the iceberg area by 10 %–13 %. Again,
these are biases and both approaches are limited to winter
images. For U-net, we find a bias of −5.0± 29.1 %, which
is lower than previous studies. But it comes with a relatively
high standard deviation due to some complete failures where
the iceberg is not found at all. Previous studies only com-
pare iceberg areas where icebergs were detected success-
fully. Barbat et al. (2019a) report the lowest false positive
(2.3 %) and false negative (3.3 %) rates and the highest over-
all accuracy (97.5 %) of all previous studies. While their false
negative rate is lower than our false negative rate (21 %),
U-net achieves a lower false positive rate of 0.4 % and a
higher overall accuracy of 99 %. In a second study, Barbat et
al. (2021) also analyse the area deviation of the detected ice-
bergs and find average area deviations of 10± 4 %, which is
also the best score reported so far, though they only consider
correctly detected icebergs in this metric. We find an MAE of
15± 26 % for U-net, which is slightly higher, but it contains
images where the iceberg was not found at all. These cases
are not included in the estimates of Barbat et al. (2021). Our
MAD, which is less sensitive to such outliers, is 4.1 %, with
25 % and 75 % quantiles of 2.1 % and 12.1 %, respectively.
These metrics compare favourably to all previous studies. We
also demonstrate in our study that the performance varies de-
pending on the chosen test dataset; therefore, all measures
and comparisons can only give an indication of the real per-
formance. Judging from the data we have and comparing our
results on this with previous studies as well as possible, U-net
proves to be a very promising approach.

Qualitatively, previous studies have found degraded accu-
racies in challenging environmental conditions or excluded
these from their datasets. Some studies report false detections
due to sea ice (Koo et al., 2021; Mazur et al., 2017; Wesche
and Dierking, 2012) or only applied their algorithm to sea-

ice-free conditions (Willis et al., 1996). Moreover, several
previous studies have also encountered problems with clus-
ters of several icebergs and iceberg fragments too close to
each other (Barbat et al., 2019a; Frost et al., 2016; Koo et
al., 2021; Williams et al., 1999). U-net also shows slightly
degraded performance in these situations (4.8 % and 6.9 %
MAD in area, respectively, compared with 2.8 % in open
ocean and F1 scores of 0.88 and 0.85, respectively, compared
with 0.93) but still achieves satisfying results in most of these
cases. The challenge of other big icebergs does not occur in
previous studies, since they were looking for all icebergs any-
way. In terms of the coast, many previous studies have em-
ployed a land mask (e.g. Barbat et al., 2019a; Collares et al.,
2018; Frost et al., 2016; Mazur et al., 2017; Silva and Bigg,
2005) but might miss newly calved icebergs due to that. Fi-
nally, the problem of dark icebergs has been described in sev-
eral papers (Mazur et al., 2017; Wesche and Dierking, 2012;
Williams et al., 1999) but was rarely mentioned in the evalu-
ation. This is likely because most previous studies use visual
inspection to identify misses and false alarms (e.g. Barbat
et al., 2019a; Frost et al., 2016; Mazur et al., 2017; Wesche
and Dierking, 2012; Williams et al., 1999). However, dark
icebergs are hard to spot in SAR images even for manual op-
erators. They might be missed by the visual inspection too
unless, such as in our case, we know that there must be an
iceberg of a certain size and shape that we are looking for.
Others limit their method to winter images, when dark ice-
bergs do not occur (Silva and Bigg, 2005; Williams et al.,
1999; Young et al., 1998).

5 Conclusions

We have developed a novel algorithm to automatically seg-
ment giant Antarctic icebergs in Sentinel-1 images. It is the
first study to apply a deep neural network for iceberg seg-
mentation. Furthermore, it is also the first study specifically
targeting giant icebergs. Comparing U-net to two state-of-
the-art segmentation techniques (Otsu thresholding and k-
means), we find that U-net outperforms them in most metrics.
Across all 191 images, U-net achieves an F1 score of 0.84
and a median absolute area deviation of 4.1 %. Only the miss
rates of Otsu and k-means are lower than for U-net, as we find
that U-net overlooks parts of the iceberg appearing largest in
the images. In this case, all training samples show smaller
icebergs. We believe that this issue could be resolved with
a larger training dataset. U-net can reliably handle a variety
of challenging environmental conditions including sea ice,
nearby iceberg fragments, other icebergs and small patches
of nearby coast, though it fails when too much coast is visible
and when icebergs appear dark. In these cases, all existing al-
gorithms fail, but such obvious errors could easily be picked
out in a tracking scenario. Compared to previous studies, we
also regard our results as promising. In the short term, fur-
ther post-processing could be implemented to filter outliers
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for an operational application. But in the long run, we would
suggest enlarging the training dataset before applying it to
icebergs that are smaller or larger than those currently cov-
ered by the training data.
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