Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-4079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-4079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry
British Antarctic Survey, Cambridge, CB3 0ET, UK
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Oliver J. Marsh
British Antarctic Survey, Cambridge, CB3 0ET, UK
Anna E. Hogg
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Helen Amanda Fricker
Scripps Polar Center, Scripps Institution of Oceanography, UC San
Diego, La Jolla, California 92093-0225, USA
Laurie Padman
Earth and Space Research, Corvallis, Oregon 97333-1536, USA
Related authors
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
Jennifer Cocks, Alessandro Silvano, Alberto C. Naveira Garabato, Oana Dragomir, Noémie Schifano, Anna E. Hogg, and Alice Marzocchi
Ocean Sci., 21, 1609–1625, https://doi.org/10.5194/os-21-1609-2025, https://doi.org/10.5194/os-21-1609-2025, 2025
Short summary
Short summary
Heat and freshwater fluxes in the Southern Ocean mediate global ocean circulation and abyssal ventilation. These fluxes manifest as changes in steric height: sea level anomalies from changes in ocean density. We compute the steric height anomaly of the Southern Ocean using satellite data and validate it against in situ observations. We analyse trends and variability in steric height, drawing links to climate variability, and discuss the effectiveness of the method, highlighting issues with its application.
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025, https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary
Short summary
Grounding line discharge is a measure of the amount of ice entering the ocean from an ice mass. This paper describes a dataset of grounding line discharge for the Antarctic Ice Sheet and each of its glaciers. The dataset shows that Antarctic Ice Sheet grounding line discharge has increased since 1996.
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025, https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith, and Kohler region of West Antarctica (2005–2022). We found substantial speed-up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10 %, due to the redirection of ice flow into its rapidly thinning neighbour. This process of “ice piracy” has not previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Yikai Zhu, Anna E. Hogg, Andrew Hooper, and Benjamin J. Wallis
EGUsphere, https://doi.org/10.5194/egusphere-2025-849, https://doi.org/10.5194/egusphere-2025-849, 2025
Short summary
Short summary
This study investigates the long- and short-term changes in the grounding line of the Amery Ice Shelf in East Antarctica, using satellite observations and a method called Differential Range Offset Tracking (DROT). Our findings show how the grounding line behaves in response to tides and other environmental factors, with implications for understanding ice shelf stability.
Katie Lowery, Pierre Dutrieux, Paul R. Holland, Anna E. Hogg, Noel Gourmelen, and Benjamin J. Wallis
EGUsphere, https://doi.org/10.5194/egusphere-2025-267, https://doi.org/10.5194/egusphere-2025-267, 2025
Short summary
Short summary
We use CryoSat-2 to observe monthly changes in Pine Island Glacier's ice shelf (PIG) surface at 250 m resolution. We show that melt is focused on the western walls of basal channels and highlight the role of channels in grounding pinning points. PIG’s main channel geometry is inherited from the ice-bed interface upstream of the grounding line. These results highlight the importance of channels on ice shelf stability and how this can change over time.
Christian T. Wild, Reinhard Drews, Niklas Neckel, Joohan Lee, Sihyung Kim, Hyangsun Han, Won Sang Lee, Veit Helm, Sebastian Harry Reid Rosier, Oliver J. Marsh, and Wolfgang Rack
EGUsphere, https://doi.org/10.5194/egusphere-2024-3593, https://doi.org/10.5194/egusphere-2024-3593, 2024
Short summary
Short summary
The stability of the Antarctic Ice Sheet depends on how resistance along the sides of large glaciers slows down the flow of ice into the ocean. We present a method to map ice strength using the effect of ocean tides on floating ice shelves. Incorporating weaker ice in shear zones improves the accuracy of model predictions compared to satellite observations. This demonstrates the untapped potential of radar satellites to map ice stiffness in the most critical areas for ice sheet stability.
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024, https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lake segments up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enable the development of data-driven models of meltwater volumes in satellite imagery.
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024, https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Short summary
The grounding line, where ice begins to float, is an essential variable to understand ice dynamics, but in some locations it can be challenging to measure with established techniques. Using satellite data and a new method, Wallis et al. measure the grounding line position of glaciers and ice shelves in the Antarctic Peninsula and find retreats of up to 16.3 km have occurred since the last time measurements were made in the 1990s.
Trystan Surawy-Stepney, Stephen L. Cornford, and Anna E. Hogg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2438, https://doi.org/10.5194/egusphere-2024-2438, 2024
Short summary
Short summary
The speed at which Antarctic ice flows is dependent on its viscosity and the sliperiness of the ice/bedrock interface. Often, these unknown variables are inferred from observations of ice speed. This article presents an attempt to make this difficult procedure easier by making use of additional information in the form of observations of crevasses, which make ice appear less viscous to numerical models. We find in some circumstances that this leads to more appealing solutions to this problem.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Julia R. Andreasen, Anna E. Hogg, and Heather L. Selley
The Cryosphere, 17, 2059–2072, https://doi.org/10.5194/tc-17-2059-2023, https://doi.org/10.5194/tc-17-2059-2023, 2023
Short summary
Short summary
There are few long-term, high spatial resolution observations of ice shelf change in Antarctica over the past 3 decades. In this study, we use high spatial resolution observations to map the annual calving front location on 34 ice shelves around Antarctica from 2009 to 2019 using satellite data. The results provide a comprehensive assessment of ice front migration across Antarctica over the last decade.
Ashley Morris, Bradley P. Lipovsky, Catherine C. Walker, and Oliver J. Marsh
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-63, https://doi.org/10.5194/tc-2023-63, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Floating ice shelves hold back Antarctic ice flow, but they are thinning and retreating. To help predict future mass loss we need a better understanding of the behavior of the rifts from which icebergs detach. We automate rift width measurement using surface elevation data from the ICESat-2 laser altimetry satellite, and validate using satellite images and GPS receivers placed around the "Halloween Crack" on Brunt Ice Shelf. We find rift opening stagnated following calving from an adjacent rift.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Qiang Sun, Christopher M. Little, Alice M. Barthel, and Laurie Padman
Ocean Sci., 17, 131–145, https://doi.org/10.5194/os-17-131-2021, https://doi.org/10.5194/os-17-131-2021, 2021
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M.
R.: Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020.
Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.:
Sedimentation beneath ice shelves – the view from ice stream B, Mar.
Geol., 85, 101–120, https://doi.org/10.1016/0025-3227(89)90150-3, 1989.
Anandakrishnan, S., Voigt, D. E., Alley, R. B., and King, M. A.: Ice stream
D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf,
Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003.
Arendt, A., Scheick, J., Shean, D., Buckley, E., Grigsby, S., Haley,
C., Heagy, L., Mohajerani, Y., Neumann, T., Nilsson, J.,
Markus, T., Paolo, F. S., Perez, F., Petty, A.,
Schweiger, A., Smith, B., Steiker, A., Alvis, S., Henderson,
S., Holschuh, N., Liu, Z., and Sutterly, T.: 2020 ICESat-2
Hackweek Tutorials, Zenodo [code], https://doi.org/10.5281/zenodo.3966463,
2020.
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to
the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359,
https://doi.org/10.1002/2017GL072514, 2017.
Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R.,
Hodson, T. O., and Fricker, H. A.: Tidal Pressurization of the Ocean Cavity
Near an Antarctic Ice Shelf Grounding Line, J. Geophys. Res.-Oceans, 125, e2019JC015562,
https://doi.org/10.1029/2019JC015562, 2020.
Bindschadler, R. and Choi, H.: High-resolution Image-derived Grounding and
Hydrostatic Lines for the Antarctic Ice Sheet, U.S. Antarctic Program (USAP)
Data Center [data set], https://doi.org/10.7265/N56T0JK2, 2011.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, B. Am. Meteorol.
Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Brancato, V., Rignot, E., Milillo, P., Morlighem, M., Mouginot, J., An, L.,
Scheuchl, B., Jeong, S., Rizzoli, P., Bueso Bello, J. L., and Prats-Iraola,
P.: Grounding Line Retreat of Denman Glacier, East Antarctica, Measured With
COSMO-SkyMed Radar Interferometry Data, Geophys. Res. Lett., 47, e2019GL086291,
https://doi.org/10.1029/2019GL086291, 2020.
Brunt, K. M., Fricker, H. A., Padman, L., and O'Neel, S.: ICESat-Derived
Grounding Zone for Antarctic Ice Shelves, U.S. Antarctic Program (USAP) Data
Center [data set], https://doi.org/10.7265/N5CF9N19, 2010a.
Brunt, K. M., Fricker, H. A., Padman, L., Scambos, T. A., and O'Neel, S.:
Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat
laser altimetry, Ann. Glaciol., 51, 71–79,
https://doi.org/10.3189/172756410791392790, 2010b.
Brunt, K. M., Fricker, H. A., and Padman, L.: Analysis of ice plains of the
Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry, J.
Glaciol., 57, 965–975, https://doi.org/10.3189/002214311798043753, 2011.
Catania, G., Hulbe, C., and Conway, H.: Grounding-line basal melt rates
determined using radar-derived internal stratigraphy, J. Glaciol., 56,
545–554, https://doi.org/10.3189/002214310792447842, 2010.
Chen, H., Rignot, E., Scheuchl, B., and Ehrenfeucht, S.: Grounding Zone of
Amery Ice Shelf, Antarctica, From Differential Synthetic-Aperture Radar
Interferometry, Geophys. Res. Lett., 50, e2022GL102430,
https://doi.org/10.1029/2022GL102430, 2023.
Christianson, K., Parizek, B. R., Alley, R. B., Horgan, H. J., Jacobel, R.
W., Anandakrishnan, S., Keisling, B. A., Craig, B. D., and Muto, A.: Ice
sheet grounding zone stabilization due to till compaction, Geophys. Res.
Lett., 40, 5406–5411, https://doi.org/10.1002/2013GL057447, 2013.
Ciracì, E., Rignot, E., Scheuchl, B., Tolpekin, V., Wollersheim, M.,
An, L., Milillo, P., Bueso-Bello, J.-L., Rizzoli, P., and Dini, L.: Melt
rates in the kilometer-size grounding zone of Petermann Glacier, Greenland,
before and during a retreat, P. Natl. Acad. Sci. USA, 120,
e2220924120, https://doi.org/10.1073/pnas.2220924120, 2023.
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020.
Corr, H.: Processed airborne radio-echo sounding data from the GRADES-IMAGE
survey covering the Evans and Rutford Ice Streams, and ice rises in the
Ronne Ice Shelf, West Antarctica (2006/2007) (1.0), NERC EDS UK Polar Data
Centre [data set],
https://doi.org/10.5285/C7EA5697-87E3-4529-A0DD-089A2ED638FB, 2021.
Corr, H. F. J., Doake, C. S. M., Jenkins, A., and Vaughan, D. G.:
Investigations of an “ice plain” in the mouth of Pine Island Glacier,
Antarctica, J. Glaciol., 47, 51–57,
https://doi.org/10.3189/172756501781832395, 2001.
Dawson, G. J. and Bamber, J. L.: Antarctic Grounding Line Mapping From
CryoSat-2 Radar Altimetry, Geophys. Res. Lett., 44, 11886–11893,
https://doi.org/10.1002/2017GL075589, 2017.
Dawson, G. J. and Bamber, J. L.: Measuring the location and width of the Antarctic grounding zone using CryoSat-2, The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, 2020.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Dowdeswell, J. A., Batchelor, C. L., Montelli, A., Ottesen, D., Christie, F.
D. W., Dowdeswell, E. K., and Evans, J.: Delicate seafloor landforms reveal
past Antarctic grounding-line retreat of kilometers per year, Science, 368,
1020–1024, https://doi.org/10.1126/science.aaz3059, 2020.
Drews, R., Pattyn, F., Hewitt, I. J., Ng, F. S. L., Berger, S., Matsuoka,
K., Helm, V., Bergeot, N., Favier, L., and Neckel, N.: Actively evolving
subglacial conduits and eskers initiate ice shelf channels at an Antarctic
grounding line, Nat. Commun., 8, 15228, https://doi.org/10.1038/ncomms15228,
2017.
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf
buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503,
https://doi.org/10.1029/2004GL022024, 2005.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S.
H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schroder, M.: Strong
Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability,
Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014.
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini,
O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.:
Retreat of Pine Island Glacier controlled by marine ice-sheet instability,
Nat. Clim. Change, 4, 117–121, https://doi.org/10.1038/nclimate2094, 2014.
Freer, B.: s2002365/Tidal-GL-Migration-ICESat-2: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.8037209, 2023.
Fricker, H. A. and Padman, L.: Ice shelf grounding zone structure from
ICESat laser altimetry, Geophys. Res. Lett., 33, L15502,
https://doi.org/10.1029/2006GL026907, 2006.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and
Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East
Antarctica using InSAR, MODIS and ICESat, Antarct. Sci., 21, 515–532,
https://doi.org/10.1017/S095410200999023X, 2009.
Friedl, P., Weiser, F., Fluhrer, A., and Braun, M. H.: Remote sensing of
glacier and ice sheet grounding lines: A review, Earth-Sci. Rev., 201,
102948, https://doi.org/10.1016/j.earscirev.2019.102948, 2020.
Goldberg, D. N., Gourmelen, N., Kimura, S., Millan, R., and Snow, K.: How
Accurately Should We Model Ice Shelf Melt Rates?, Geophys. Res. Lett., 46,
189–199, https://doi.org/10.1029/2018GL080383, 2019.
Graham, A. G. C., Wåhlin, A., Hogan, K. A., Nitsche, F. O., Heywood, K.
J., Totten, R. L., Smith, J. A., Hillenbrand, C.-D., Simkins, L. M.,
Anderson, J. B., Wellner, J. S., and Larter, R. D.: Rapid retreat of
Thwaites Glacier in the pre-satellite era, Nat. Geosci., 706–713,
https://doi.org/10.1038/s41561-022-01019-9, 2022.
Gudmundsson, G. H.: Tides and the flow of Rutford Ice Stream, West
Antarctica, J. Geophys. Res., 112, F04007,
https://doi.org/10.1029/2006JF000731, 2007.
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.:
Instantaneous Antarctic ice- sheet mass loss driven by thinning ice shelves,
Geophys. Res. Lett., 46, 13903–13909.
https://doi.org/10.1029/2019GL085027, 2019.
Hogg, A. E., Shepherd, A., Gourmelen, N., and Engdahl, M.: Grounding line
migration from 1992 to 2011 on Petermann Glacier, North-West Greenland, J.
Glaciol., 62, 1104–1114, https://doi.org/10.1017/jog.2016.83, 2016.
Hogg, A. E., Shepherd, A., Gilbert, L., Muir, A., and Drinkwater, M. R.:
Mapping ice sheet grounding lines with CryoSat-2, Adv. Space Res., 62,
1191–1202, https://doi.org/10.1016/j.asr.2017.03.008, 2018.
Holdsworth, G.: Flexure of a Floating Ice Tongue, J. Glaciol., 8, 385–397,
https://doi.org/10.3189/S0022143000026976, 1969.
Horgan, H. J., Alley, R. B., Christianson, K., Jacobel, R. W.,
Anandakrishnan, S., Muto, A., Beem, L. H., and Siegfried, M. R.: Estuaries
beneath ice sheets, Geology, 41, 1159–1162,
https://doi.org/10.1130/G34654.1, 2013a.
Horgan, H. J., Christianson, K., Jacobel, R. W., Anandakrishnan, S., and
Alley, R. B.: Sediment deposition at the modern grounding zone of Whillans
Ice Stream, West Antarctica, Geophys. Res. Lett., 40, 3934–3939,
https://doi.org/10.1002/grl.50712, 2013b.
Howard, S. L., Padman, L., and Erofeeva, S. Y.: CATS2008: Circum-Antarctic
Tidal Simulation version 2008 (1), U.S. Antarctic Program (USAP) Data Center
[code], https://doi.org/10.15784/601235, 2019.
Howat, I., Morin, P., Porter, C., and Noh, M.-J.: The Reference Elevation
Model of Antarctica, Version 1, Harvard Dataverse [data set],
https://doi.org/10.7910/DVN/SAIK8B, 2018.
Jenkins, A., Corr, H. F. J., Nicholls, K. W., Stewart, C. L., and Doake, C.
S. M.: Interactions between ice and ocean observed with phase-sensitive
radar near an Antarctic ice-shelf grounding line, J. Glaciol., 52, 325–346,
https://doi.org/10.3189/172756506781828502, 2006.
Johnson, M. R. and Smith, A. M.: Seabed topography under the southern and
western Ronne Ice Shelf, derived from seismic surveys, Antarct. Sci., 9,
201–208, https://doi.org/10.1017/S0954102097000254, 1997.
Joughin, I., Smith, B. E., and Holland, D. M.: Sensitivity of 21st century
sea level to ocean-induced thinning of Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 37, L20502, https://doi.org/10.1029/2010GL044819, 2010.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481,
2012.
King, M. A., Padman, L., Nicholls, K., Clarke, P. J., Gudmundsson, G. H.,
Kulessa, B., and Shepherd, A.: Ocean tides in the Weddell Sea: New
observations on the Filchner-Ronne and Larsen C ice shelves and model
validation, J. of Geophys. Res.-Oceans, 116, C06006,
https://doi.org/10.1029/2011JC006949, 2011.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018.
Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L.: Mapping the grounding zone of Larsen C Ice Shelf, Antarctica, from ICESat-2 laser altimetry, The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020, 2020.
Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L.: A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry, Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, 2022a.
Li, T., Dawson, Geoffrey J., Chuter, Stephen J., and Bamber, Jonathan L.:
ICESat-2 L3 Grounding Zone for Antarctic Ice Shelves, Version 1, NASA
National Snow and Ice Data Center Distributed Active Archive Center [data
set], https://doi.org/10.5067/RI67B92708M9, 2022b.
Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L.: Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica, The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023, 2023.
Luthcke, S. B., Thomas, T. C., Pennington, T. A., Rebold, T. W., Nicholas,
J. B., Rowlands, D. D., Gardner, A. S., and Bae, S.: ICESat-2 Pointing
Calibration and Geolocation Performance, Earth Space Sci., 8, e2020EA001494,
https://doi.org/10.1029/2020EA001494, 2021.
MacGregor, J. A., Anandakrishnan, S., Catania, G. A., and Winebrenner, D.
P.: The grounding zone of the Ross Ice Shelf, West Antarctica, from
ice-penetrating radar, J. Glaciol., 57, 917–928,
https://doi.org/10.3189/002214311798043780, 2011.
Magruder, L., Brunt, K., Neumann, T., Klotz, B., and Alonzo, M.: Passive
Ground-Based Optical Techniques for Monitoring the On-Orbit ICESat-2
Altimeter Geolocation and Footprint Diameter, Earth Space Sci., 8, e2020EA001414,
https://doi.org/10.1029/2020EA001414, 2021.
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D.
M.: Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, L06601,
https://doi.org/10.1029/2010GL046462, 2011.
Makinson, K., King, M. A., Nicholls, K. W., and Hilmar Gudmundsson, G.:
Diurnal and semidiurnal tide-induced lateral movement of Ronne Ice Shelf,
Antarctica, Geophys. Res. Lett., 39, L06601,
https://doi.org/10.1029/2012GL051636, 2012.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2
(ICESat-2): Science requirements, concept, and implementation, Remote Sens.
Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Milillo, P., Rignot, E., Mouginot, J., Scheuchl, B., Morlighem, M., Li, X.,
and Salzer, J. T.: On the Short-term Grounding Zone Dynamics of Pine Island
Glacier, West Antarctica, Observed With COSMO-SkyMed Interferometric Data:
PIG Grounding Line Dynamics, Geophys. Res. Lett., 44, 10436–10444,
https://doi.org/10.1002/2017GL074320, 2017.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of
Thwaites Glacier, West Antarctica, Sci. Adv., 5, eaau3433,
https://doi.org/10.1126/sciadv.aau3433, 2019.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J. L., Prats-Iraola, P., and Dini, L.: Rapid glacier retreat
rates observed in West Antarctica, Nat. Geosci., 15, 48–53,
https://doi.org/10.1038/s41561-021-00877-z, 2022.
Minchew, B. M., Simons, M., Riel, B., and Milillo, P.: Tidally induced
variations in vertical and horizontal motion on Rutford Ice Stream, West
Antarctica, inferred from remotely sensed observations, J. Geophys.
Res.-Earth, 122, 167–190, https://doi.org/10.1002/2016JF003971, 2017.
Moholdt, G., Padman, L., and Fricker, H. A.: Basal mass budget of Ross and
Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of
ICESat altimetry: Ice shelf basal melting from altimetry, J. Geophys.
Res.-Earth, 119, 2361–2380, https://doi.org/10.1002/2014JF003171, 2014.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and Milillo, P.: Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning, Sci. Rep., 11, 4992, https://doi.org/10.1038/s41598-021-84309-3, 2021.
Mosbeux, C., Padman, L., Klein, E., Bromirski, P. D., and Fricker, H. A.: Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations, The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, 2023.
Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H.
A., and King, M. A.: Impact of tide-topography interactions on basal melting
of Larsen C Ice Shelf, Antarctica, J. Geophys. Res., 117, C05005,
https://doi.org/10.1029/2011JC007263, 2012.
Naughten, K. A., De Rydt, J., Rosier, S. H. R., Jenkins, A., Holland, P. R.,
and Ridley, J. K.: Two-timescale response of a large Antarctic ice shelf to
climate change, Nat. Commun., 12, 1991,
https://doi.org/10.1038/s41467-021-22259-0, 2021.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner,
A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W.,
Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder,
L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and
Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite – 2 mission: A
global geolocated photon product derived from the Advanced Topographic Laser
Altimeter System, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.
Nicholls, K. W. and Østerhus, S.: Interannual variability and ventilation
timescales in the ocean cavity beneath Filchner-Ronne Ice Shelf, Antarctica,
J. Geophys. Res., 109, C04014, https://doi.org/10.1029/2003JC002149, 2004.
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A new
tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34,
247–254, https://doi.org/10.3189/172756402781817752, 2002.
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on
the Antarctic and Greenland Ice Sheets, Rev. Geophys., 56, 142–184,
https://doi.org/10.1002/2016RG000546, 2018.
Park, J. W., Gourmelen, N., Shepherd, A., Kim, S. W., Vaughan, D. G., and
Wingham, D. J.: Sustained retreat of the Pine Island Glacier, Geophys. Res.
Lett., 40, 2137–2142, https://doi.org/10.1002/grl.50379, 2013.
Reeh, N., Mayer, C., Olesen, O. B., Christensen, E. L., and Thomsen, H. H.:
Tidal movement of Nioghalvfjerdsfjorden glacier, northeast Greenland:
observations and modelling, Ann. Glaciol., 31, 111–117,
https://doi.org/10.3189/172756400781820408, 2000.
Reeh, N., Christensen, E. L., Mayer, C., and Olesen, O. B.: Tidal bending of
glaciers: a linear viscoelastic approach, Ann. Glaciol., 37, 83–89,
https://doi.org/10.3189/172756403781815663, 2003.
Rignot, E.: Tidal motion, ice velocity and melt rate of Petermann Gletscher,
Greenland, measured from radar interferometry, J. Glaciol., 42, 476–485,
https://doi.org/10.3189/S0022143000003464, 1996.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504,
https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs Antarctic
Grounding Line from Differential Satellite Radar Interferometry, Version 2,
NASA National Snow and Ice Data Center Distributed Active Archive Center
[data set], https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based
Antarctica Ice Velocity Map, Version 2, NASA National Snow and Ice Data
Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Robel, A. A., Tsai, V. C., Minchew, B., and Simons, M.: Tidal modulation of
ice shelf buttressing stresses, Ann. Glaciol., 58, 12–20,
https://doi.org/10.1017/aog.2017.22, 2017.
Robel, A. A., Wilson, E., and Seroussi, H.: Layered seawater intrusion and melt under grounded ice, The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, 2022.
Rosier, S. H. R. and Gudmundsson, G. H.: Tidal controls on the flow of ice
streams, Geophys. Res. Lett., 43, 4433–4440,
https://doi.org/10.1002/2016GL068220, 2016.
Rosier, S. H. R. and Gudmundsson, G. H.: Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf, The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, 2020.
Rosier, S. H. R., Gudmundsson, G. H., and Green, J. A. M.: Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system, The Cryosphere, 9, 1649–1661, https://doi.org/10.5194/tc-9-1649-2015, 2015.
Ross, N., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jordan, T. A., Le
Brocq, A., Rippin, D. M., Young, D., Blankenship, D. D., and Siegert, M. J.:
Steep reverse bed slope at the grounding line of the Weddell Sea sector in
West Antarctica, Nat. Geosci., 5, 393–396,
https://doi.org/10.1038/ngeo1468, 2012.
Sayag, R. and Worster, M. G.: Elastic dynamics and tidal migration of
grounding lines modify subglacial lubrication and melting, Geophys. Res.
Lett., 40, 5877–5881, https://doi.org/10.1002/2013GL057942, 2013.
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and
Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Remote Sens.
Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Scheick, J., Leong, W. J., Bisson, K., Arendt, A., Bhushan, S., Fair, Z., Hagen, N. R., Henderson, S., Knuth, F., Li, T., Liu, Z., Piunno, R., Ravinder, N., Setiawan, L. D., Sutterley, T., Swinski, J. P., and Anubhav: icepyx: querying, obtaining, analyzing, and manipulating ICESat-2 datasets. In The Journal of Open Source Software (v0.6.4_JOSS, Vol. 8, Number 84, p. 4912), Zenodo [code], https://doi.org/10.5281/zenodo.7806097, 2023.
Schmeltz, M., Rignot, E., and MacAyeal, D. R.: Ephemeral grounding as a
signal of ice-shelf change, J. Glaciol., 47, 71–77,
https://doi.org/10.3189/172756501781832502, 2001.
Schmeltz, M., Rignot, E., and MacAyeal, D.: Tidal flexure along ice-sheet
margins: comparison of InSAR with an elastic-plate model, Ann. Glaciol., 34,
202–208, https://doi.org/10.3189/172756402781818049, 2002.
Schmidt, B. E., Washam, P., Davis, P. E. D., Nicholls, K. W., Holland, D.
M., Lawrence, J. D., Riverman, K. L., Smith, J. A., Spears, A., Dichek, D.
J. G., Mullen, A. D., Clyne, E., Yeager, B., Anker, P., Meister, M. R.,
Hurwitz, B. C., Quartini, E. S., Bryson, F. E., Basinski-Ferris, A., Thomas,
C., Wake, J., Vaughan, D. G., Anandakrishnan, S., Rignot, E., Paden, J., and
Makinson, K.: Heterogeneous melting near the Thwaites Glacier grounding
line, Nature, 614, 471–478, https://doi.org/10.1038/s41586-022-05691-0,
2023.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007.
Schoof, C.: Marine ice sheet dynamics. Part 2. A Stokes flow contact
problem, J. Fluid Mech., 679, 122–155,
https://doi.org/10.1017/jfm.2011.129, 2011.
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J.
P.: Overview of the ICESat Mission, Geophys. Res. Lett., 32, L21S01,
https://doi.org/10.1029/2005GL024009, 2005.
Siegert, M., Ross, N., Corr, H., Kingslake, J., and Hindmarsh, R.: Late
Holocene ice-flow reconfiguration in the Weddell Sea sector of West
Antarctica, Quaternary Sci. Rev., 78, 98–107,
https://doi.org/10.1016/j.quascirev.2013.08.003, 2013.
Smith, A. M.: The use of tiltmeters to study the dynamics of Antarctic
ice-shelf grounding lines, J. Glaciol., 37, 51–58,
https://doi.org/10.3189/S0022143000042799, 1991.
Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S.,
Brunt, K. M., Csathó, B., Harbeck, K., Huth, A., Neumann, T., Nilsson,
J., and Siegfried, M. R.: Land ice height-retrieval algorithm for NASA's
ICESat-2 photon-counting laser altimeter, Remote Sens. Environ., 233,
111352, https://doi.org/10.1016/j.rse.2019.111352, 2019.
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S.,
Csathó, B. M., Holschuh, N., Nilsson, J., Paolo, F. S., and the ICESat-2
Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 5, Boulder
Colorado USA, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL06.005, 2021.
Stephenson, S. N., Doake, C. S. M., and Horsfall, J. A. C.: Tidal flexure of
ice shelves measured by tiltmeter, Nature, 282, 496–497,
https://doi.org/10.1038/282496a0, 1979.
Stubblefield, A. G., Spiegelman, M., and Creyts, T. T.: Variational
formulation of marine ice-sheet and subglacial-lake grounding-line dynamics,
J. Fluid Mech., 919, A23, https://doi.org/10.1017/jfm.2021.394, 2021.
Sutterley, T. C., Markus, T., Neumann, T. A., van den Broeke, M., van Wessem, J. M., and Ligtenberg, S. R. M.: Antarctic ice shelf thickness change from multimission lidar mapping, The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019, 2019.
Thomas, R. H.: The Dynamics of Marine Ice Sheets, J. Glaciol., 24, 167–177,
https://doi.org/10.1017/S0022143000014726, 1979.
Thompson, J., Simons, M., and Tsai, V. C.: Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams, The Cryosphere, 8, 2007–2029, https://doi.org/10.5194/tc-8-2007-2014, 2014.
Tsai, V. C. and Gudmundsson, G. H.: An improved model for tidally modulated
grounding-line migration, J. Glaciol., 61, 216–222,
https://doi.org/10.3189/2015JoG14J152, 2015.
Vaughan, D. G.: Tidal flexure at ice shelf margins, J. Geophys. Res.-Sol. Ea.,
100, 6213–6224, https://doi.org/10.1029/94JB02467, 1995.
Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman,
K. L., and Christianson, K.: Ice-shelf tidal flexure and subglacial pressure
variations, Earth Planet. Sc. Lett., 361, 422–428,
https://doi.org/10.1016/j.epsl.2012.11.008, 2013.
Warburton, K. L. P., Hewitt, D. R., and Neufeld, J. A.: Tidal Grounding-Line
Migration Modulated by Subglacial Hydrology, Geophys. Res. Lett., 47, e2020GL089088,
https://doi.org/10.1029/2020GL089088, 2020.
Wild, C. T., Marsh, O. J., and Rack, W.: Viscosity and elasticity: a model
intercomparison of ice-shelf bending in an Antarctic grounding zone, J.
Glaciol., 63, 573–580, https://doi.org/10.1017/jog.2017.15, 2017.
Co-editor-in-chief
This paper is worthy of a highlight. The authors show the importance of a process that has been known to exist but hasn’t been measured in this detail before. From a public interest perspective, the results might be tricky to explain in general terms, but the key results fit within the category of “major discovery” and/or “mystery”.
This paper is worthy of a highlight. The authors show the importance of a process that has been...
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate...