Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3363-2023
https://doi.org/10.5194/tc-17-3363-2023
Research article
 | 
21 Aug 2023
Research article |  | 21 Aug 2023

Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard

Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein

Related authors

InSAR sensitivity to active layer ground ice content in Adventdalen, Svalbard
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972,https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Developing the Svalbard Integrated Arctic Earth Observing System (SIOS)
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024,https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Multiyear surface wave dataset from the subsurface “DeepLev” eastern Levantine moored station
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024,https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021,https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020,https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Spectral induced polarization survey for the estimation of hydrogeological parameters in an active rock glacier
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025,https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024,https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
High-resolution 4D ERT monitoring of recently deglaciated sediments undergoing freeze-thaw transitions in the High Arctic
Mihai O. Cimpoiasu, Oliver Kuras, Harry Harrison, Paul B. Wilkinson, Philip Meldrum, Jonathan E. Chambers, Dane Liljestrand, Carlos Oroza, Steven K. Schmidt, Pacifica Sommers, Lara Vimercati, Trevor P. Irons, Zhou Lyu, Adam Solon, and James A. Bradley
EGUsphere, https://doi.org/10.5194/egusphere-2024-350,https://doi.org/10.5194/egusphere-2024-350, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary

Cited articles

Ahonen, L.: Permafrost: occurrence and physiochemical processes (POSIVA–01-05), Geological Survey of Finland, Finland, ISBN 951-652-106-1, 2001.​​​​​​​ 
Alsos, I. G., Sjögren, P., Edwards, M. E., Landvik, J. Y., Gielly, L., Forwick, M., Coissac E., Brown A. G., Jakobsen L. V., Føreid M. K., and Pedersen, M. W.: Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change, Holocene, 26, 627–642, https://doi.org/10.1177/0959683615612563, 2016. 
Ames, W. F.: Numerical methods for partial differential equations, 2nd edition, Academic press INC, ISBN 0-12-056761-X, 1977. 
Anderson, L., Edwards,, M., Shapley,, M. D., Finney, B. P., and Langdon, C.: Holocene Thermokarst Lake Dynamics in Northern Interior Alaska: The Interplay of Climate, Fire, and Subsurface Hydrology, Front. Earth Sci., 7, 53, https://doi.org/10.3389/feart.2019.00053, 2019. 
Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and salt flow in subsea permafrost modeled with CryoGRID2, J. Geophys. Res.-Earth Surf., 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. 
Download
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.