Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem
CORRESPONDING AUTHOR
Department of Geography and Environment, Bar-Ilan University,
Ramat Gan 529002, Israel
Arctic Geophysics Department, The University Centre in Svalbard (UNIS), Longyearbyen 9170, Norway
Vladimir Lyakhovsky
Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem
9692100, Israel
Hanne Hvidtfeldt Christiansen
Arctic Geophysics Department, The University Centre in Svalbard (UNIS), Longyearbyen 9170, Norway
Yehudit Harlavan
Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem
9692100, Israel
Yishai Weinstein
Department of Geography and Environment, Bar-Ilan University,
Ramat Gan 529002, Israel
Related authors
No articles found.
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972, https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Short summary
In permafrost environments, the ground surface moves due to the formation and melt of ice in the ground. This study compares ground surface displacements measured from satellite images against field data of ground ice contents. We find good agreement between the detected seasonal subsidence and observed ground ice melt. Our results show the potential of satellite remote sensing for mapping ground ice variability, but also indicate that ice in excess of the pore space must be considered.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021, https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Cited articles
Ahonen, L.: Permafrost: occurrence and physiochemical processes (POSIVA–01-05), Geological Survey of Finland, Finland, ISBN 951-652-106-1, 2001.
Alsos, I. G., Sjögren, P., Edwards, M. E., Landvik, J. Y., Gielly, L.,
Forwick, M., Coissac E., Brown A. G., Jakobsen L. V., Føreid M. K., and
Pedersen, M. W.: Sedimentary ancient DNA from Lake Skartjørna, Svalbard:
Assessing the resilience of arctic flora to Holocene climate change,
Holocene, 26, 627–642, https://doi.org/10.1177/0959683615612563, 2016.
Ames, W. F.: Numerical methods for partial differential equations, 2nd
edition, Academic press INC, ISBN 0-12-056761-X, 1977.
Anderson, L., Edwards,, M., Shapley,, M. D., Finney, B. P., and Langdon, C.:
Holocene Thermokarst Lake Dynamics in Northern Interior Alaska: The
Interplay of Climate, Fire, and Subsurface Hydrology, Front. Earth Sci.,
7, 53, https://doi.org/10.3389/feart.2019.00053, 2019.
Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V.,
Grosse, G., and Grigoriev, M. N.: Heat and salt flow in subsea permafrost
modeled with CryoGRID2, J. Geophys. Res.-Earth Surf., 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019.
Arnscheidt, C. W. and Rothman, D. H.: Routes to global
glaciation, P. Roy. Soc. A, 476, 2239, https://doi.org/10.1098/rspa.2020.0303, 2020.
Balland, V. and Arp, P. A.: Modeling soil thermal conductivities over a
wide range of conditions, J. Environ. Eng. Sci., 4, 549–558, https://doi.org/10.1139/s05-007, 2005.
Bear, J. and Dagan, G.: Some exact solutions of interface problems by means
of the hodograph method, J. Geophys. Res., 69, 1563–1572,
https://doi.org/10.1029/JZ069i008p01563, 1964.
Benn, D. and Evans, D. J.: Glaciers and glaciation, 2nd edition,
Routledge, 707 pp., ISBN 9780340905791, 2014.
Betlem, P., Midttømme, K., Jochmann, M., Senger, K., and Olaussen, S.:
Geothermal Gradients on Svalbard, Arctic Norway, in:First EAGE/IGA/DGMK
Joint Workshop on Deep Geothermal Energy, 8–9 November 2018, Strasbourg, France, European Association of Geoscientists and Engineers, cp-577, https://doi.org/10.3997/2214-4609.201802945, 2018.
Black, R. F.: Permafrost: a review, GSA Bulletin, 65, 839–856,
https://doi.org/10.1130/0016-7606(1954)65[839:PR]2.0.CO;2, 1954.
Bodnar, R. J.: Revised equation and table for determining the freezing point
depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta, 57, 683–684, https://doi.org/10.1016/0016-7037(93)90378-A, 1993.
Bondevik, S., Mangerud, J., Ronnert, L., and Salvigsen, O.: Postglacial sea-level history of Edgeøya and Barentsøya, eastern Svalbard, Polar Res., 14, 153–180, https://doi.org/10.3402/polar.v14i2.6661, 1995.
Burn, C. R.: Permafrost distribution and stability, edited by: French, H.,
and Slaymaker, O., Changing Cold Environments: A Canadian Perspective, John
Wiley and Sons, Ltd, 126–143, https://doi.org/10.1002/9781119950172.ch7, 2011.
Burt, T. P., and Williams, P. J.: Hydraulic conductivity in frozen
soils, Earth Surf. Processes, 1, 349–360,
https://doi.org/10.1002/esp.3290010404, 1976.
Cable, S., Elberling, B., and Kroon, A.: Holocene permafrost history and
cryostratigraphy in the High-Arctic Adventdalen Valley, central
Svalbard, Boreas, 47, 423–442, https://doi.org/10.1111/bor.12286, 2018.
Cary, J. W., and Mayland, H. F.: Salt and water movement in unsaturated
frozen soil, Soil Sci. Soc. Am. J., 36, 549–555,
https://doi.org/10.2136/sssaj1972.03615995003600040019x, 1972.
Cascoyne, M.: A review of published literature on the effects of permafrost
on the hydrogeochemistry of bedrock, Technical Report, Posiva Oy, Helsinki
Finland, ISBN 951-652-095-2, 2000.
Christiansen, H. H.: Thermal regime of ice-wedge cracking in Adventdalen,
Svalbard, Permafrost Periglac., 16, 87–98, https://doi.org/10.1002/ppp.523, 2005.
Christiansen, H. H. and Humlum, O.: Active layer monitoring in Ny Ålesund and in Adventdalen in the CALM Network, in: Permafrost, Periglacial Features and Glaciers in Svalbard, Excursion Guide, VIII International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, Rapport−serie i naturgeografi, Universitetet i Oslo, vol. 14, 97–100, https://www.permafrost.org/event/icop8/ (last access: 16 August 2023), 2003.
Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H.,
Farbrot, H., Humlum, O., Johansson, M., Ingeman-Nielsen, T., Kristensen, L.,
Hjort, J., Holmlund, P. Sannel, A. B. K. Sigsgaard, C. Åkerman, H. J.
Foged, N. Blikra, L. H. Pernosky, M. A., and Ødegård, R. S.: The
thermal state of permafrost in the Nordic area during the International
Polar Year 2007–2009, Permafrost Periglac., 21, 156–181,
https://doi.org/10.1002/ppp.687, 2010.
Christiansen, H. H., Humlum, O., and Eckerstorfer, M.: Central Svalbard
2000–2011 meteorological dynamics and periglacial landscape response, Arct.
Antarct. Alp. Res., 45, 6–18, https://doi.org/10.1657/1938-4246-45.16, 2013.
Christiansen, H. H., Gilbert, G. L., Demidov, N., Guglielmin, M., Isaksen, K., Osuch, M., and Boike, J.: Permafrost temperatures and active layer thickness in Svalbard 2017–2018. State of Environmental Science in Svalbard, SESS report 2019, edited by: Van den Heuvel, F., Hübner, C., Błaszczyk, M., Heimann, M., and Lihavainen, H., Longyearbyen, Svalbard Integrated Arctic Earth Observing System, Report card, 236–249,
https://epic.awi.de/id/eprint/50889/ (last access: 16 August 2023), 2020.
Cochand, M., Molson, J., and Lemieux, J. M.: Groundwater hydrogeochemistry
in permafrost regions, Permafrost Periglac., 30, 90–103,
https://doi.org/10.1002/ppp.1998, 2019.
Cocks, F. H. and Brower, W. E.: Phase diagram relationships in cryobiology,
Cryobiology, 11, 340–358, https://doi.org/10.1016/0011-2240(74)90011-X,
1974.
Cosenza, P., Guerin, R., and Tabbagh, A.: Relationship between thermal
conductivity and water content of soils using numerical modelling, Eur.
J. Soil Sci., 54, 581–588, https://doi.org/10.1046/j.1365-2389.2003.00539.x, 2003.
Crank, J.: Free and moving boundary problems, Oxford University Press, USA, ISBN 0-19-853370-5, 1984.
de Baar, H. J. W., van Heuven, S. M. A. C., and Middag, R.: Ocean Salinity, Major Elements, and Thermohaline Circulation, in: Encyclopedia of
Geochemistry, edited by: White, W., Encyclopedia of Earth Sciences Series, Springer, Cham, https://doi.org/10.1007/978-3-319-39193-9_120-1, 2017.
Dobinski, W.: Permafrost, Earth-Sci. Rev., 108, 158–169,
https://doi.org/10.1016/j.earscirev.2011.06.007, 2011.
Edmunds, W. M., Hinsby, K., Marlin, C., de Melo, M. C., Manzano, M.,
Vaikmae, R., and Travi, Y.: Evolution of groundwater systems at the European
coastline, Geol. Soc. Sp. London, 189, 289–311,
https://doi.org/10.1144/GSL.SP.2001.189.01.17, 2001.
El Kadi, K. and Janajreh, I.: Desalination by freeze crystallization: an
overview, Int. J. Therm. Environ. Eng, 15, 103–110, https://doi.org/10.5383/ijtee.15.02.004, 2017.
Elverhøi, A., Svendsen, J. I., Solheim, A., Andersen, E. S., Milliman,
J., Mangerud, J., and Hooke, R. L.: Late Quaternary sediment yield from the
high Arctic Svalbard area, J. Geol., 103, 1–17, https://doi.org/10.1086/629718, 1995.
Etzelmüller, B., Schuler, T. V., Isaksen, K., Christiansen, H. H., Farbrot, H., and Benestad, R.: Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century, The Cryosphere, 5, 67–79, https://doi.org/10.5194/tc-5-67-2011, 2011.
Farbrot, H., Etzelmüller, B., Schuler, T. V., Guðmundsson, Á.,
Eiken, T., Humlum, O., and Björnsson, H.: Thermal characteristics and
impact of climate change on mountain permafrost in Iceland, J. Geophys.
Res.-Earth, 112, F03S90, https://doi.org/10.1029/2006JF000541, 2007.
Farnsworth, W. R.: The Topographical and Meteorological Influence on Snow
Distribution in Central Spitsbergen: How the spatial variability of snow
influences slope-scale stability, permafrost landform dynamics and regional
distribution trends The Topographical and Meteorological Influence on Snow
Distribution in Central Svalbard, Master Thesis, Department of geosciences
faculty of mathematics and natural sciences, University of Oslo, https://www.duo.uio.no/ (last access: 16 August 2023), 2013.
Farnsworth, W. R., Ingólfsson, Ó., Alexanderson, H., Allaart, L.,
Forwick, M., Noormets, R., Retelle, M., and Schomacker, A.: Holocene glacial
history of Svalbard: Status, perspectives and challenges, Earth-Sci. Rev., 208, 103249, https://doi.org/10.1016/j.earscirev.2020.103249, 2020.
Farouki, O. T.: Thermal properties of soils, Cold Regions Research and
Engineering Lab, Hanover NH, 1981.
Forman, S. L., Lubinski, D. J., Ingólfsson, Ó., Zeeberg, J. J.,
Snyder, J. A., Siegert, M. J., and Matishov, G. G.: A review of postglacial
emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia,
Quaternary Sci. Rev., 23, 1391–1434, https://doi.org/10.1016/j.quascirev.2003.12.007, 2004.
French, H. M.: The periglacial environment, 4th edition, John Wiley and
Sons LTD, ISBN 9781119132790, 2017.
Gilbert, G. L., Christiansen, H. H., and Neumann, U.: Coring of
unconsolidated permafrost deposits: methodological successes and challenges,
in: Proceedings GeoQuébec 2015 – 68th Canadian Geotechnical Conference
and 7th Canadian Permafrost Conference, 20–23 September 2015, Québec, Canada, Canadian Geotechnical Society, 20–23, Paper, 6 pp., https://hdl.handle.net/1956/17626 (last access: 16 August 2023), 2015.
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H.,
and Buylaert, J. P.: Late Quaternary sedimentation and permafrost
development in a Svalbard fjord-valley, Norwegian high
Arctic, Sedimentology, 65, 2531–2558, https://doi.org/10.1111/sed.12476, 2018.
Gilbert, G., Instanes, A., Sinitsyn, A., and Aalberg, A.: Characterization
of two sites for geotechnical testing in permafrost: Longyearbyen,
Svalbard, Norges Geotekniske Institutt, http://hdl.handle.net/11250/2632119 (last access: 16 August 2023), 2019.
Gitterman, K. E.: Thermal analysis of sea water, CRREL TL 287, USA Cold
Regions Res. and Eng. Lab., Hanover, N.H., 1937.
Grinter, M., Lacelle, D., Baranova, N., Murseli, S., and Clark, I. D.: Late
Pleistocene and Holocene ice-wedge activity on the Blackstone Plateau,
central Yukon, Canada, Quaternary Res., 91, 1–15,
https://doi.org/10.1017/qua.2018.65, 2018.
Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P., and Boike, J.: Linking tundra vegetation, snow, soil temperature, and permafrost, Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, 2020.
Grundvåg, S. A., Jelby, M. E., Śliwińska, K. K., Nøhr-Hansen,
H., Aadland, T., Sandvik, S. E., Tennvassås, I., Engen, T., and
Olaussen, S.: Sedimentology and palynology of the Lower Cretaceous
succession of central Spitsbergen: integration of subsurface and outcrop
data, Norw. J. Geol., 99, 253–284, https://doi.org/10.17850/njg006, 2019.
Harada, K. and Yoshikawa, K.: Permafrost age and thickness near
Adventfjorden, Spitsbergen, Polar Geography, 20, 267–281,
https://doi.org/10.1080/10889379609377607, 1996.
He, H., Flerchinger, G. N., Kojima, Y., Dyck, M., and Lv, J.: A review and
evaluation of 39 thermal conductivity models for frozen soils, Geoderma,
382, 114694, https://doi.org/10.1016/j.geoderma.2020.114694, 2021.
Herut, B., Starinsky, A., Katz, A., and Bein, A.: The role of seawater
freezing in the formation of subsurface brines, Geochim. Cosmochim. Acta, 54,
13–21, https://doi.org/10.1016/0016-7037(90)90190-V, 1990.
Hindshaw, R. S., Heaton, T. H., Boyd, E. S., Lindsay, M. R., and Tipper, E. T.: Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments, Chem. Geol., 420, 37–50, https://doi.org/10.1016/j.chemgeo.2015.11.004, 2016.
Hodson, A. J., Nowak, A., Hornum, M. T., Senger, K., Redeker, K., Christiansen, H. H., Jessen, S., Betlem, P., Thornton, S. F., Turchyn, A. V., Olaussen, S., and Marca, A.: Sub-permafrost methane seepage from open-system pingos in Svalbard, The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, 2020.
Homshaw, L. G.: Freezing and melting temperature hysteresis of water in
porous materials: Application to the study of pore form, J. Soil Sci., 31,
399–414, https://doi.org/10.1111/j.1365-2389.1980.tb02090.x, 1980.
Hornum, M. T., Hodson, A. J., Jessen, S., Bense, V., and Senger, K.: Numerical modelling of permafrost spring discharge and open-system pingo formation induced by basal permafrost aggradation, The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, 2020.
Hornum, M. T., Betlem, P., and Hodson, A.: Groundwater flow through
continuous permafrost along geological boundary revealed by electrical
resistivity tomography, Geophys. Res. Lett., 48, e2021GL092757,
https://doi.org/10.1029/2021GL092757, 2021.
Humlum, O.: Holocene permafrost aggradation in Svalbard, Geol. Soc. Spec. Publ. London, 242, 119–129, https://doi.org/10.1144/GSL.SP.2005.242.01.11,
2005.
Humlum, O., Instanes, A., and Sollid, J. L.: Permafrost in Svalbard: a
review of research history, climatic background and engineering
challenges, Polar Res., 22, 191–215, 2003.
Imbrie, J., Berger, A., Boyle, E., Clemens, S. C., Duffy, A., Howard, W.
R., Kukla,, G., Kutzbach, J. Martinson, D. G., McIntyre, A., Mix, A. C.,
Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, M. E.,
Raymo, W. L., Shackleton, N. J., and Toggweiler, J. R.: On the structure and
origin of major glaciation cycles 2. The 100 000-year
cycle, Paleoceanography, 8, 699–735, https://doi.org/10.1029/93PA02751, 1993.
Isaksen, K., Benestad, R. E., Harris, C., and Sollid, J. L.: Recent extreme
near-surface permafrost temperatures on Svalbard in relation to future
climate scenarios, Geophys. Res. Lett., 34, L17502, https://doi.org/10.1029/2007GL031002, 2007.
Kasprzak, M., Łopuch, M., Głowacki, T., and Milczarek, W., Evolution of
near-shore outwash fans and permafrost spreading under their surface: A case
study from Svalbard, Remote Sens.-Basel, 12, 482,
https://doi.org/10.3390/rs12030482, 2020.
Kaufman, D. S., Axford, Y. L., Henderson, A. C., McKay, N. P., Oswald, W.
W., Saenger, C., Anderson, R. S., Bailey, H. L., Clegg, B., Gajewski, K.,
Hu, F. S., Jones, M. C., Massa, C., Routson, C. C., Werner, A., Wooller, M.
J., and Yu, Z.: Holocene climate changes in eastern Beringia (NW North
America) – A systematic review of multi-proxy evidence, Quaternary Sci.
Rev., 147, 312–339, https://doi.org/10.1016/j.quascirev.2015.10.021, 2015.
Keating, K., Binley, A., Bense, V., Van Dam, R. L., and Christiansen, H. H.:
Combined geophysical measurements provide evidence for unfrozen water in
permafrost in the Adventdalen valley in Svalbard, Geophys. Res. Lett., 45,
7606–7614, https://doi.org/10.1029/2017GL076508, 2018.
Kjellman, S. E., Schomacker, A., Thomas, E. K., Håkansson, L., Duboscq,
S., Cluett, A. A., Farnsworth, W. R., Allaart L., Cowling, O. C., McKay, N.
P., Brynjólfsson, S., and Ingólfsson, Ó.: Holocene precipitation
seasonality in northern Svalbard: influence of sea ice and regional ocean
surface conditions, Quaternary Sci. Rev., 240, 106388,
https://doi.org/10.1016/j.quascirev.2020.106388, 2020.
Kokelj, S. V., Smith, C. A. S., and Burn, C. R.: Physical and chemical
characteristics of the active layer and permafrost, Herschel Island, western
Arctic Coast, Canada, Permafrost Periglac., 13, 171–185,
https://doi.org/10.1002/ppp.417, 2002.
Kukkonen, I. T. and Šafanda, J.: Numerical modelling of permafrost in
bedrock in northern Fennoscandia during the Holocene, Global Planet.
Change, 29, 259–273, https://doi.org/10.1016/S0921-8181(01)00094-7, 2001.
Kutzbach, J. E. and Guetter, P. J.: The influence of changing orbital
parameters and surface boundary conditions on climate simulations for the
past 18 000 years, J. Atmos. Sci., 43, 1726–1759,
https://doi.org/10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2, 1986.
Landvik, J. Y., Mangerud, J., and Salvigsen, O.: Glacial history and
permafrost in the Svalbard area, in: Proceedings of the 5th International
Conference on Permafrost, 2–5 August 1988, Trondheim, Norway, Tapir Publishers, vol. 1, 194–198, ISBN 82-519-08639, 1988.
Lemieux, J. M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Simulating
the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation, J. Geophys. Res.-Earth, 113, F03017, https://doi.org/10.1029/2007JF000928, 2008.
Lenz, J., Grosse, G., Jones, B. M., Walter Anthony, K. M., Bobrov, A., Wulf,
S., and Wetterich, S.: Mid-Wisconsin to Holocene Permafrost and Landscape
Dynamics based on a Drained Lake Basin Core from the Northern Seward
Peninsula, Northwest Alaska, Permafrost Periglac., 27,
56–75, https://doi.org/10.1002/ppp.1848, 2015.
Lønne, I. and Lyså, A.: Deglaciation dynamics following the Little
Ice Age on Svalbard: implications for shaping of landscapes at high
latitudes, Geomorphology, 72, 300–319, https://doi.org/10.1016/j.geomorph.2005.06.003, 2005.
Lønne, I. and Nemec, W.: High-arctic fan delta recording deglaciation
and environment disequilibrium, Sedimentology, 51, 553–589,
https://doi.org/10.1111/j.1365-3091.2004.00636.x, 2004.
Lunardini, V. J.: Freezing of soil with an unfrozen water content and
variable thermal properties, US Army Corps of Engineers,
Cold Regions Research and Engineering Laboratory, vol. 88, No. 2, http://hdl.handle.net/11681/9076 (last access: 16 August 2023), 1988.
Luo, D., Jin, H., Marchenko, S. S., and Romanovsky, V. E.: Difference
between near-surface air, land surface and ground surface temperatures and
their influences on the frozen ground on the Qinghai-Tibet
Plateau, Geoderma, 312, 74–85, https://doi.org/10.1016/j.geoderma.2017.09.037, 2018.
Lüthi, Z. L.: Thermal State of Permafrost in Central and Western
Spitsbergen 2008–2009, Master's Thesis, Faculty of Science University of
Bern, 2010.
Mangerud, J. and Svendsen, J. I.: The Holocene thermal maximum around
Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth,
Holocene, 28, 65–83, https://doi.org/10.1177/0959683617715701, 2018.
Mangerud, J., Bolstad, M., Elgersma, A., Helliksen, D., Landvik, J. Y.,
Lønne, I., Lycke, A. K., Salvigsen, O., Sandahl, T., and Svendsen, J. I.:
The last glacial maximum on Spitsbergen, Svalbard, Quaternary Res., 38,
1–31, https://doi.org/10.1016/0033-5894(92)90027-G, 1992.
Mangerud, J., Astakhov, V., and Svendsen, J. I.: The extent of the
Barents–Kara ice sheet during the Last Glacial Maximum, Quaternary Sci.
Rev., 21, 111–119, https://doi.org/10.1016/S0277-3791(01)00088-9, 2002.
Marion, G. M., Farren, R. E., and Komrowski, A. J.: Alternative pathways for
seawater freezing, Cold Reg. Sci. Technol., 29, 259–266,
https://doi.org/10.1016/S0165-232X(99)00033-6, 1999.
McEwen, T. and de Marsily, G.: The potential significance of permafrost to
the behaviour of a deep radioactive waste repository,
Sweden, SKI-TR–91-8, http://inis.iaea.org/search/search.aspx?orig_q=RN:24007818 (last access: 16 August 2023), 1991.
McFarlin, J. M., Axford, Y., Osburn, M. R., Kelly, M. A., Osterberg, E. C.,
and Farnsworth, L. B.: Pronounced summer warming in northwest Greenland
during the Holocene and Last Interglacial, P. Natl. Acad. Sci. USA, 115, 6357–6362, https://doi.org/10.1073/pnas.1720420115, 2018.
McKinney W.: Python for data analysis: Data wrangling with Pandas Numpy and Ipython, O'Reilly Media Inc, ISBN 9781449319793, 2012.
Morgenstern, N. R. and Anderson, D. M.: Physics, chemistry, and mechanics
of frozen ground: a review, in: Permafrost: North American Contribution [to
The] Second International Conference, 13–28 July 1973, Yakutsk, Siberia, National Academies, vol. 2, p. 257, https://doi.org/10.17226/20223, 1973.
Murton, J. B.: What and where are periglacial landscapes?, Permafrost
Periglac., 32, 186–212, https://doi.org/10.1002/ppp.2102, 2021.
Nelson, K. H. and Thompson, T. G.: Deposition of salts from sea water by
frigid concentration, Technical Report No. 29, Office of Naval Research,
Contract N8onr-520/III, Project NR 083 012, 1954.
Nordli, Ø., Przybylak, R., Ogilvie, A. E., and Isaksen, K.: Long-term
temperature trends and variability on Spitsbergen: the extended Svalbard
Airport temperature series, 1898–2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2014.
Nordli, Ø., Wyszyński, P., Gjelten, H., Isaksen, K., Łupikasza, E.,
Niedźwiedź, T., and Przybylak, R.: Revisiting the extended Svalbard
Airport monthly temperature series, and the compiled corresponding daily
series 1898–2018, Co-Action Publishing, https://doi.org/10.33265/polar.v39.3614, 2020.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Olaussen, S., Senger, K., Braathen, A., Grundvåg, S. A., and Mørk,
A.: You learn as long as you drill; research synthesis from the Longyearbyen
CO2 Laboratory, Svalbard, Norway, Norw. J. Geol., 99, 157–187,
https://doi.org/10.17850/njg008, 2019.
Oldenborger, G. A. and LeBlanc, A. M.: Monitoring changes in unfrozen water
content with electrical resistivity surveys in cold continuous
permafrost, Geophys. J. Int., 215, 965–977, https://doi.org/10.1093/gji/ggy321, 2018.
Osuch, M. and Wawrzyniak, T.: Inter-and intra-annual changes in air
temperature and precipitation in western Spitsbergen, Int. J. Climatol., 37,
3082–3097, https://doi.org/10.1002/joc.4901, 2017.
Overduin, P. P., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., and Westermann, S.: Submarine permafrost map in the
Arctic modeled using 1-D transient heat flux (SuPerMAP), J. Geophys. Res.-Oceans, 124, 3490–3507, https://doi.org/10.1029/2018JC014675, 2019.
Park, H. S., Kim, S. J., Stewart, A. L., Son, S. W., and Seo, K. H.:
Mid-Holocene Northern Hemisphere warming driven by Arctic
amplification, Science Advances, 5, eaax8203, https://doi.org/10.1126/sciadv.aax8203, 2019.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L.,
Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A.
M.: Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017.
Rasmussen, T. L., Forwick, M., and Mackensen, A.: Reconstruction of inflow
of Atlantic Water to Isfjorden, Svalbard during the Holocene: Correlation to
climate and seasonality, Mar. Micropaleontol., 94, 80–90,
https://doi.org/10.1016/j.marmicro.2012.06.008, 2012.
Ringer, W. E.: Über die Veranderungen in der Zusammensetzung des Meereswassersalzes beim Ausfrieres, Conseil Permanent International pour l'Exploration de la Mer, November 1928, France, Rapport 47, 226–232, 1928.
Rotem, D.: 1-D freeze-thaw model code, Rotem et al., 2023, figshare [code], https://doi.org/10.6084/m9.figshare.23684493, 2023.
Rubinstein, L., Geiman, H., and Shachaf, M.: Heat transfer with a free
boundary moving within a concentrated thermal capacity, IMA J. Appl.
Math., 28, 131–147, https://doi.org/10.1093/imamat/28.2.131, 1982.
Rühaak, W., Anbergen, H., Grenier, C., McKenzie, J., Kurylyk, B. L.,
Molson, J., Roux, N., and Sass, I.: Benchmarking numerical freeze thaw
models, Enrgy. Proced., 76, 301–310, https://doi.org/10.1016/j.egypro.2015.07.866, 2015.
Russak, A. and Sivan, O.: Hydrogeochemical tool to identify salinization or
freshening of coastal aquifers determined from combined field work,
experiments, and modeling, Environ. Sci. Technol., 44,
4096–4102, https://doi.org/10.1021/es1003439, 2010.
Salvigsen, O.: Occurrence of pumice on raised beaches and Holocene shoreline
displacement in the inner Isfjorden area, Svalbard, Polar Res., 2,
107–113, https://doi.org/10.1111/j.1751-8369.1984.tb00488.x, 1984.
Šarler, B.: Stefan's work on solid-liquid phase changes, Eng. Anal. Bound. Elem., 16, 83–92, https://doi.org/10.1016/0955-7997(95)00047-X, 1995.
Sessford, E. G., Strzelecki, M. C., and Hormes, A.: Reconstruction of
Holocene patterns of change in a High Arctic coastal landscape, Southern
Sassenfjorden, Svalbard, Geomorphology, 234, 98–107,
https://doi.org/10.1016/j.geomorph.2014.12.046, 2015.
Solomon, S. M., Taylor, A. E., and Stevens, C. W.: Nearshore ground
temperatures, seasonal ice bonding, and permafrost formation within the
bottom-fast ice zone, Mackenzie Delta, NWT, in: Proceedings of the Ninth
International Conference on Permafrost, 28 June–3 July 2008, Fairbanks, Alaska, USA, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, vol. 29, 1675–1680, ISBN 978-0-9800179-3-9 (v.2), 2008.
Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J., and
Humlum, O.: Active layer thickening and controls on interannual variability
in the Nordic Arctic compared to the circum-Arctic, Permafrost Periglac., 32, 47–58, https://doi.org/10.1002/ppp.2088, 2021.
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations
on Spitsbergen, Svalbard, Holocene, 7, 45–57,
https://doi.org/10.1177/095968369700700105, 1997.
Szafraniec, J. E. and Dobiński, W.: Deglaciation rate of selected
Nunataks in Spitsbergen, Svalbard – Potential for permafrost expansion above
the glacial environment, Geosciences, 10, 202, https://doi.org/10.3390/geosciences10050202, 2020.
Tavakoli, S., Gilbert, G., Lysdahl, A. O. K., Frauenfelder, R., and
Forsberg, C. S.: Geoelectrical properties of saline permafrost soil in the
Adventdalen valley of Svalbard (Norway), constrained with in-situ well
data, J. Appl. Geophys., 195, 104497, https://doi.org/10.1016/j.jappgeo.2021.104497, 2021.
Treat, C. C. and Jones, M. C.: Near-surface permafrost aggradation in
Northern Hemisphere peatlands shows regional and global trends during the
past 6000 years, Holocene, 28, 998–1010, https://doi.org/10.1177/0959683617752858, 2018.
Ulrich, M., Wetterich, S., Rudaya, N., Frolova, L., Schmidt, J., Siegert,
C., Fedorov A. N., and Zielhofer, C.: Rapid thermokarst evolution during the
mid-Holocene in Central Yakutia, Russia, Holocene, 27, 1899–1913,
https://doi.org/10.1177/0959683617708454, 2017.
van der Bilt, W. G., D'Andrea, W. J., Bakke, J., Balascio, N. L., Werner, J.
P., Gjerde, M., and Bradley, R. S.: Alkenone-based reconstructions reveal
four-phase Holocene temperature evolution for High Arctic Svalbard,
Quaternary Sci. Rev., 183, 204–213, https://doi.org/10.1016/j.quascirev.2016.10.006, 2018.
van der Bilt, W. G., D'Andrea, W. J., Werner, J. P., and Bakke, J.: Early
Holocene temperature oscillations exceed amplitude of observed and projected
warming in Svalbard lakes, Geophys. Res. Lett., 46, 14732–14741,
https://doi.org/10.1029/2019GL084384, 2019.
Verruijt, A.: A note on the Ghyben–Herzberg formula, Hydrolog. Sci. J., 13,
43–46, https://doi.org/10.1080/02626666809493624, 1968.
Waller, R. I., Murton, J. B., and Kristensen, L.: Glacier–permafrost
interactions: Processes, products and glaciological implications, Sediment
Geol., 255, 1–28, https://doi.org/10.1016/j.sedgeo.2012.02.005, 2012.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing
permafrost – A review, Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Weinstein, Y., Rotem, D., Kooi, H., Yechieli, Y., Sültenfuß, J.,
Kiro, Y., Harlavan, Y., Feldman, M., and Christiansen, H. H.: Radium isotope
fingerprinting of permafrost-applications to thawing and intra-permafrost
processes, Permafrost Periglac., 30, 104–112, https://doi.org/10.1002/ppp.1999, 2019.
Williams, P. J. and Smith, M. W.: The frozen earth: fundamentals of
geocryology, Cambridge University Press, Cambridge, vol. 306, https://doi.org/10.1017/CBO9780511564437, 1989.
Yang, B., Bai, F., Wang, Y., and Wang, Z.: How mushy zone evolves and
affects the thermal behaviours in latent heat storage and recovery: A
numerical study, Int. J. Energ. Res., 44, 4279–4297,
https://doi.org/10.1002/er.5191, 2020.
Zhang, N. and Wang, Z.: Review of soil thermal conductivity and predictive
models, Int. J. Therm. Sci., 117, 172–183,
https://doi.org/10.1016/j.ijthermalsci.2017.03.013, 2017.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime:
An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow...