Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-327-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-327-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Johannes Feldmann
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Anders Levermann
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Institute of Physics, University of Potsdam, Potsdam, Germany
LDEO, Columbia University, New York, USA
Related authors
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Anders Levermann and Johannes Feldmann
The Cryosphere, 13, 1621–1633, https://doi.org/10.5194/tc-13-1621-2019, https://doi.org/10.5194/tc-13-1621-2019, 2019
Short summary
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Johannes Feldmann and Anders Levermann
The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, https://doi.org/10.5194/tc-11-1913-2017, 2017
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, https://doi.org/10.5194/tc-9-631-2015, 2015
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-19, https://doi.org/10.5194/esd-2023-19, 2023
Preprint under review for ESD
Short summary
Short summary
A fifth of the world population lives in East China whose climate is dominated by the East Asian Summer Monsoon (EASM). Therefore, it is important to know how the EASM will change under global warming. Here, we use the data of 34 climate models of the latest generation to understand how the EASM will change throughout the 21st century. The models project that the EASM will intensify and the variability between the years will increase associated with an increase of extremely wet seasons.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
EGUsphere, https://doi.org/10.5194/egusphere-2023-14, https://doi.org/10.5194/egusphere-2023-14, 2023
Short summary
Short summary
Future sea-level rise exhibits multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea level projections.
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, https://doi.org/10.5194/tc-14-633-2020, 2020
Short summary
Short summary
A large ensemble of glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) was analyzed in which four relevant model parameters were systematically varied. These parameters were selected in a companion study and are associated with uncertainties in ice dynamics, climatic forcing, basal sliding and solid Earth deformation. For each ensemble member a statistical score is computed, which enables calibrating the model against both modern and geologic data.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary
Short summary
During the last glacial cycles the Antarctic Ice Sheet experienced alternating climatic conditions and varying sea-level history. In response, changes in ice sheet volume and ice-covered area occurred, implying feedbacks on the global sea level. We ran model simulations of the ice sheet with the Parallel Ice Sheet Model (PISM) over the last two glacial cycles to evaluate the model's sensitivity to different choices of boundary conditions and parameters to gain confidence for future projections.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Anders Levermann and Johannes Feldmann
The Cryosphere, 13, 1621–1633, https://doi.org/10.5194/tc-13-1621-2019, https://doi.org/10.5194/tc-13-1621-2019, 2019
Short summary
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Johannes Feldmann and Anders Levermann
The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, https://doi.org/10.5194/tc-11-1913-2017, 2017
Jacob Schewe and Anders Levermann
Earth Syst. Dynam., 8, 495–505, https://doi.org/10.5194/esd-8-495-2017, https://doi.org/10.5194/esd-8-495-2017, 2017
Short summary
Short summary
Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.
Jan Wohland, Torsten Albrecht, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-191, https://doi.org/10.5194/tc-2016-191, 2016
Preprint withdrawn
Anders Levermann and Ricarda Winkelmann
The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, https://doi.org/10.5194/tc-10-1799-2016, 2016
Short summary
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, https://doi.org/10.5194/tc-9-631-2015, 2015
M. A. Martin, A. Levermann, and R. Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1705-2015, https://doi.org/10.5194/tcd-9-1705-2015, 2015
Preprint withdrawn
Short summary
Short summary
Numerical ice sheet modelling shows that idealized, step-function type ocean warming in the Weddell Sea, where the ice sheet is close to floatation, leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels.
D. Ehlert and A. Levermann
Earth Syst. Dynam., 5, 383–397, https://doi.org/10.5194/esd-5-383-2014, https://doi.org/10.5194/esd-5-383-2014, 2014
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
T. Albrecht and A. Levermann
The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014, https://doi.org/10.5194/tc-8-587-2014, 2014
C. F. Schleussner, J. Runge, J. Lehmann, and A. Levermann
Earth Syst. Dynam., 5, 103–115, https://doi.org/10.5194/esd-5-103-2014, https://doi.org/10.5194/esd-5-103-2014, 2014
A. Menon, A. Levermann, J. Schewe, J. Lehmann, and K. Frieler
Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, https://doi.org/10.5194/esd-4-287-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Antarctic
Widespread slowdown in thinning rates of West Antarctic ice shelves
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities
Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM)
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Modes of Antarctic tidal grounding line migration revealed by ICESat-2 laser altimetry
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
Evaluating the Impact of Enhanced Horizontal Resolution over the Antarctic Domain Using a Variable-Resolution Earth Systems Model
New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica
Estimating surface melt in Antarctica from 1979 to 2022, using a statistically parameterized positive degree-day model
Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 during the satellite era and into the future (1979–2100)
Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier
Hysteretic evolution of ice rises and ice rumples in response to variations in sea level
Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Sensitivity of the Ross Ice Shelf to environmental and glaciological controls
High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys over 30 years
Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica
Clouds drive differences in future surface melt over the Antarctic ice shelves
Rapid fragmentation of Thwaites Eastern Ice Shelf
Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica
Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica
Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion
Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability
Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3
Overestimation and adjustment of Antarctic ice flow velocity fields reconstructed from historical satellite imagery
Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet
Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica
Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf
Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls
TanDEM-X PolarDEM 90 m of Antarctica: generation and error characterization
Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls
Wind-induced seismic noise at the Princess Elisabeth Antarctica Station
Nunataks as barriers to ice flow: implications for palaeo ice sheet reconstructions
Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica
Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation
Investigating the internal structure of the Antarctic ice sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration
What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates
Energetics of surface melt in West Antarctica
Brief communication: Thwaites Glacier cavity evolution
Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic Research Expedition (CHINARE) route, East Antarctica, based on coordinated multi-sensor observations
Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades
Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target
Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-265, https://doi.org/10.5194/tc-2022-265, 2023
Revised manuscript accepted for TC
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration - the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration, and insights into ice shelf-ocean-subglacial interactions in grounding zones.
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023, https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Short summary
The Antarctic ice sheet (AIS) is the largest uncertainty in future sea level estimates. The AIS mainly loses mass through ice discharge, the transfer of land ice into the ocean. Ice discharge is triggered by warming ocean water (basal melt). New future estimates of AIS sea level contributions are presented in which basal melt is constrained with ice discharge observations. Despite the different methodology, the resulting projections are in line with previous multimodel assessments.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David Schneider, Ziqi Yin, and Devon Dunmire
EGUsphere, https://doi.org/10.5194/egusphere-2022-1311, https://doi.org/10.5194/egusphere-2022-1311, 2022
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth systems models (ESMs) are a valuable tool for these estimates, but typically run at coarse spatial resolutions. Here, we present an evaluation of variable-resolution CESM2 (VR-CESM2), for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Jonathan R. Adams, Joanne S. Johnson, Stephen J. Roberts, Philippa J. Mason, Keir A. Nichols, Ryan A. Venturelli, Klaus Wilcken, Greg Balco, Brent Goehring, Brenda Hall, John Woodward, and Dylan H. Rood
The Cryosphere, 16, 4887–4905, https://doi.org/10.5194/tc-16-4887-2022, https://doi.org/10.5194/tc-16-4887-2022, 2022
Short summary
Short summary
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide historical context for ongoing ice loss in West Antarctica, including constraints on likely future ice sheet behaviour in response to climatic warming. We present evidence from rare isotopes measured in rocks collected from an outcrop next to Pope Glacier. These data suggest that Pope Glacier thinned faster and sooner after the last ice age than previously thought.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-192, https://doi.org/10.5194/tc-2022-192, 2022
Revised manuscript accepted for TC
Short summary
Short summary
Positive Degree Day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application to Antarctica. We make use of a PDD model, then we use this model to provide a new time series of surface melt amount covering the whole of Antarctica for the last four decades. We suggest that an appropriately parameterized PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
A. Clara J. Henry, Reinhard Drews, Clemens Schannwell, and Vjeran Višnjević
The Cryosphere, 16, 3889–3905, https://doi.org/10.5194/tc-16-3889-2022, https://doi.org/10.5194/tc-16-3889-2022, 2022
Short summary
Short summary
We used a 3D, idealised model to study features in coastal Antarctica called ice rises and ice rumples. These features regulate the rate of ice flow into the ocean. We show that when sea level is raised or lowered, the size of these features and the ice flow pattern can change. We find that the features depend on the ice history and do not necessarily fully recover after an equal increase and decrease in sea level. This shows that it is important to initialise models with accurate ice geometry.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022, https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Jeannette Xiu Wen Wan, Natalya Gomez, Konstantin Latychev, and Holly Kyeore Han
The Cryosphere, 16, 2203–2223, https://doi.org/10.5194/tc-16-2203-2022, https://doi.org/10.5194/tc-16-2203-2022, 2022
Short summary
Short summary
This paper assesses the grid resolution necessary to accurately model the Earth deformation and sea-level change associated with West Antarctic ice mass changes. We find that results converge at higher resolutions, and errors of less than 5 % can be achieved with a 7.5 km grid. Our results also indicate that error due to grid resolution is negligible compared to the effect of neglecting viscous deformation in low-viscosity regions.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Stephen J. Chuter, Andrew Zammit-Mangion, Jonathan Rougier, Geoffrey Dawson, and Jonathan L. Bamber
The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022, https://doi.org/10.5194/tc-16-1349-2022, 2022
Short summary
Short summary
We find the Antarctic Peninsula to have a mean mass loss of 19 ± 1.1 Gt yr−1 over the 2003–2019 period, driven predominantly by changes in ice dynamic flow like due to changes in ocean forcing. This long-term record is crucial to ascertaining the region’s present-day contribution to sea level rise, with the understanding of driving processes enabling better future predictions. Our statistical approach enables us to estimate this previously poorly surveyed regions mass balance more accurately.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Rongxing Li, Yuan Cheng, Haotian Cui, Menglian Xia, Xiaohan Yuan, Zhen Li, Shulei Luo, and Gang Qiao
The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, https://doi.org/10.5194/tc-16-737-2022, 2022
Short summary
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere, 15, 5639–5658, https://doi.org/10.5194/tc-15-5639-2021, https://doi.org/10.5194/tc-15-5639-2021, 2021
Short summary
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Birgit Wessel, Martin Huber, Christian Wohlfart, Adina Bertram, Nicole Osterkamp, Ursula Marschalk, Astrid Gruber, Felix Reuß, Sahra Abdullahi, Isabel Georg, and Achim Roth
The Cryosphere, 15, 5241–5260, https://doi.org/10.5194/tc-15-5241-2021, https://doi.org/10.5194/tc-15-5241-2021, 2021
Short summary
Short summary
We present a new digital elevation model (DEM) of Antarctica derived from the TanDEM-X DEM, with new interferometric radar acquisitions incorporated and edited elevations, especially at the coast. A strength of this DEM is its homogeneity and completeness. Extensive validation work shows a vertical accuracy of just -0.3 m ± 2.5 m standard deviation on blue ice surfaces compared to ICESat laser altimeter heights. The new TanDEM-X PolarDEM 90 m of Antarctica is freely available.
Mariel C. Dirscherl, Andreas J. Dietz, and Claudia Kuenzer
The Cryosphere, 15, 5205–5226, https://doi.org/10.5194/tc-15-5205-2021, https://doi.org/10.5194/tc-15-5205-2021, 2021
Short summary
Short summary
We provide novel insight into the temporal evolution of supraglacial lakes across six major Antarctic ice shelves in 2015–2021. For Antarctic Peninsula ice shelves, we observe extensive meltwater ponding during the 2019–2020 and 2020–2021 summers. Over East Antarctica, lakes were widespread during 2016–2019 and at a minimum in 2020–2021. We investigate environmental controls, revealing lake ponding to be coupled to atmospheric modes, the near-surface climate and the local glaciological setting.
Baptiste Frankinet, Thomas Lecocq, and Thierry Camelbeeck
The Cryosphere, 15, 5007–5016, https://doi.org/10.5194/tc-15-5007-2021, https://doi.org/10.5194/tc-15-5007-2021, 2021
Short summary
Short summary
Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Having a complete catalogue of those icequakes provides a unique view on the ice dynamics. But the instruments recording these events are polluted by different noise sources such as the wind. Using the data from multiple instruments, we found how the wind noise affects the icequake monitoring at the Princess Elisabeth Station in Antarctica.
Martim Mas e Braga, Richard Selwyn Jones, Jennifer C. H. Newall, Irina Rogozhina, Jane L. Andersen, Nathaniel A. Lifton, and Arjen P. Stroeven
The Cryosphere, 15, 4929–4947, https://doi.org/10.5194/tc-15-4929-2021, https://doi.org/10.5194/tc-15-4929-2021, 2021
Short summary
Short summary
Mountains higher than the ice surface are sampled to know when the ice reached the sampled elevation, which can be used to guide numerical models. This is important to understand how much ice will be lost by ice sheets in the future. We use a simple model to understand how ice flow around mountains affects the ice surface topography and show how much this influences results from field samples. We also show that models need a finer resolution over mountainous areas to better match field samples.
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021, https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
Short summary
Using an ice flow model and uncertainty quantification methods, we provide probabilistic projections of future sea level rise from the Filchner–Ronne region of Antarctica. We find that it is most likely that this region will contribute negatively to sea level rise over the next 300 years, largely as a result of increased surface mass balance. We identify parameters controlling ice shelf melt and snowfall contribute most to uncertainties in projections.
Sarah U. Neuhaus, Slawek M. Tulaczyk, Nathan D. Stansell, Jason J. Coenen, Reed P. Scherer, Jill A. Mikucki, and Ross D. Powell
The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, https://doi.org/10.5194/tc-15-4655-2021, 2021
Short summary
Short summary
We estimate the timing of post-LGM grounding line retreat and readvance in the Ross Sea sector of Antarctica. Our analyses indicate that the grounding line retreated over our field sites within the past 5000 years (coinciding with a warming climate) and readvanced roughly 1000 years ago (coinciding with a cooling climate). Based on these results, we propose that the Siple Coast grounding line motions in the middle to late Holocene were driven by relatively modest changes in regional climate.
Nicolaj Hansen, Peter L. Langen, Fredrik Boberg, Rene Forsberg, Sebastian B. Simonsen, Peter Thejll, Baptiste Vandecrux, and Ruth Mottram
The Cryosphere, 15, 4315–4333, https://doi.org/10.5194/tc-15-4315-2021, https://doi.org/10.5194/tc-15-4315-2021, 2021
Short summary
Short summary
We have used computer models to estimate the Antarctic surface mass balance (SMB) from 1980 to 2017. Our estimates lies between 2473.5 ± 114.4 Gt per year and 2564.8 ± 113.7 Gt per year. To evaluate our models, we compared the modelled snow temperatures and densities to in situ measurements. We also investigated the spatial distribution of the SMB. It is very important to have estimates of the Antarctic SMB because then it is easier to understand global sea level changes.
Johannes Sutter, Hubertus Fischer, and Olaf Eisen
The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, https://doi.org/10.5194/tc-15-3839-2021, 2021
Short summary
Short summary
Projections of global sea-level changes in a warming world require ice-sheet models. We expand the calibration of these models by making use of the internal architecture of the Antarctic ice sheet, which is formed by its evolution over many millennia. We propose that using our novel approach to constrain ice sheet models, we will be able to both sharpen our understanding of past and future sea-level changes and identify weaknesses in the parameterisation of current continental-scale models.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li
The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, https://doi.org/10.5194/tc-15-3083-2021, 2021
Short summary
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, and Nathan M. Urban
The Cryosphere, 15, 2683–2699, https://doi.org/10.5194/tc-15-2683-2021, https://doi.org/10.5194/tc-15-2683-2021, 2021
Short summary
Short summary
Antarctic ice shelves are vulnerable to warming ocean temperatures and have already begun thinning in response to increased basal melt rates. Sea level is expected to rise due to Antarctic contributions, but uncertainties in rise amount and timing remain largely unquantified. To facilitate uncertainty quantification, we use a high-resolution ice sheet model to build, test, and validate an ice sheet emulator and generate probabilistic sea level rise estimates for 100 and 200 years in the future.
Celia A. Baumhoer, Andreas J. Dietz, Christof Kneisel, Heiko Paeth, and Claudia Kuenzer
The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021, https://doi.org/10.5194/tc-15-2357-2021, 2021
Short summary
Short summary
We present a record of circum-Antarctic glacier and ice shelf front change over the last two decades in combination with potential environmental variables forcing frontal retreat. Along the Antarctic coastline, glacier and ice shelf front retreat dominated between 1997–2008 and advance between 2009–2018. Decreasing sea ice days, intense snowmelt, weakening easterly winds, and relative changes in sea surface temperature were identified as enabling factors for glacier and ice shelf front retreat.
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary
Short summary
Radar observation collected above Titan Dome of the East Antarctic Ice Sheet is used to describe ice geometry and test a hypothesis that ice beneath the dome is older than 1 million years. An important climate transition occurred between 1.25 million and 700 thousand years ago, and if ice old enough to study this period can be removed as an ice core, new insights into climate dynamics are expected. The new observations suggest the ice is too young – more likely 300 to 800 thousand years old.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Cited articles
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.:
Ice Sheet Contributions to Future Sea-Level Rise from Structured Expert
Judgment, P. Natl. Acad. Sci. USA, 116,
11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a
Beckmann, J., Perrette, M., Beyer, S., Calov, R., Willeit, M., and Ganopolski, A.: Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model, The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, 2019. a, b, c, d
Buckingham, E.: On Physically Similar Systems; Illustrations of the
Use of Dimensional Equations, Phys. Rev., 4, 345–376,
https://doi.org/10.1103/PhysRev.4.345, 1914. a, b
Bueler, E. and Brown, J.: Shallow Shelf Approximation as a “Sliding Law” in a
Thermomechanically Coupled Ice Sheet Model,
J. Geophys. Res.,
114, F03008, https://doi.org/10.1029/2008JF001179, 2009. a, b
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., and Jackson,
R. H.: Future Evolution of Greenland's Marine-Terminating
Outlet Glaciers, J. Geophys. Res.-Earth, 125, e2018JF004873,
https://doi.org/10.1029/2018JF004873, 2020. a, b
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020. a, b, c, d, e, f, g, h, i, j, k
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D.,
and Dutton, A.: The Paris Climate Agreement and Future Sea-Level Rise
from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0,
2021. a
Diener, T., Sasgen, I., Agosta, C., Fürst, J. J., Braun, M. H., Konrad, H.,
and Fettweis, X.: Acceleration of Dynamic Ice Loss in Antarctica From
Satellite Gravimetry, Front. Earth Sci., 9, 741789,
https://doi.org/10.3389/feart.2021.741789, 2021. a, b, c
Dupont, T. K. and Alley, R. B.: Assessment of the Importance of Ice-Shelf
Buttressing to Ice-Sheet Flow, Geophys. Res. Lett., 32, L04503,
https://doi.org/10.1029/2004GL022024, 2005. a, b, c, d
Duval, P.: Creep Behavior of Ice in Polar Ice Sheets, in: The
Science of Solar System Ices, edited by: Gudipati, M. S. and
Castillo-Rogez, J., Astrophysics and Space Science Library,
Springer, New York, NY, 227–251, https://doi.org/10.1007/978-1-4614-3076-6_8,
2013. a, b
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H.,
Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M.,
Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H.,
Payne, A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T.,
Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A.,
Calov, R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone,
J., Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K.,
Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J.,
Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T.,
Kraaijenbrink, P., Le Clec'h, S., Lee, V., Leguy, G. R., Little, C. M.,
Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F., Morlighem, M.,
O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A.,
Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer,
C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S.,
Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den
Broeke, M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger,
T.: Projected Land Ice Contributions to Twenty-First-Century Sea Level Rise,
Nature, 593, 74–82, https://doi.org/10.1038/s41586-021-03302-y, 2021. a
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.: Retreat
of Pine Island Glacier Controlled by Marine Ice-Sheet Instability, Nat.
Clim. Change, 4, 117–121, https://doi.org/10.1038/nclimate2094, 2014. a, b
Feldmann, J.: Idealized simulations of marine ice sheet instability, Zenodo [data set], https://doi.org/10.5281/zenodo.7395830, 2022. a
Feldmann, J. and Levermann, A.: Interaction of marine ice-sheet instabilities in two drainage basins: simple scaling of geometry and transition time, The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, 2015. a
Feldmann, J. and Levermann, A.: Similitude of ice dynamics against scaling of geometry and physical parameters, The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, 2016. a, b, c
Feldmann, J. and PISM authors: PISM code for modeling instability timescales (v1.0-663-ga7de0cb71),
Zenodo [code], https://doi.org/10.5281/zenodo.7395020, 2022. a
Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F., and Levermann, A.:
Resolution-Dependent Performance of Grounding Line Motion in a Shallow Model
Compared with a Full-Stokes Model According to the MISMIP3d
Intercomparison, J. Glaciol., 60, 353–360,
https://doi.org/10.3189/2014JoG13J093, 2014. a, b
Feldmann, J., Reese, R., Winkelmann, R., and Levermann, A.: Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations, The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, 2022. a, b
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S.
R. M., van den Broeke, M. R., Winkelmann, R., and Levermann, A.: Consistent
Evidence of Increasing Antarctic Accumulation with Warming, Nat.
Clim. Change, 5, 348–352, https://doi.org/10.1038/nclimate2574, 2015. a
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Parameterising the grounding line in flow-line ice sheet models, The Cryosphere, 4, 605–619, https://doi.org/10.5194/tc-4-605-2010, 2010. a
Goldberg, D., Holland, D. M., and Schoof, C.: Grounding Line Movement and Ice
Shelf Buttressing in Marine Ice Sheets, J. Geophys. Res., 114, F04026,
https://doi.org/10.1029/2008JF001227, 2009. a
Hardy, G. H. and Wright, E. M.: Some Notations, in: An Introduction to the
Theory of Numbers, Oxford University Press, 7–8, ISBN 9780198531715, 1979. a
Haseloff, M. and Sergienko, O. V.: The Effect of Buttressing on Grounding Line
Dynamics, J. Glaciol., 64, 417–431, https://doi.org/10.1017/jog.2018.30,
2018. a, b
Haseloff, M., Schoof, C., and Gagliardini, O.: A Boundary Layer Model for Ice
Stream Margins, J. Fluid Mech., 781, 353–387,
https://doi.org/10.1017/jfm.2015.503, 2015. a
Hughes, T.: Is the West Antarctic Ice Sheet Disintegrating?, J. Geophys. Res., 78, 7884–7910, https://doi.org/10.1029/JC078i033p07884, 1973. a
Joughin, I., MacAyeal, D. R., and Tulaczyk, S.: Basal Shear Stress of the
Ross Ice Streams from Control Method Inversions, J. Geophys. Res.-Sol. Ea., 109, B09405, https://doi.org/10.1029/2003JB002960, 2004. a, b, c
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West
Antarctica, Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014. a, b
Joughin, I., Smith, B. E., and Howat, I. M.: A Complete Map of Greenland
Ice Velocity Derived from Satellite Data Collected over 20 Years, J.
Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2018. a
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A., and
Slater, T.: Net Retreat of Antarctic Glacier Grounding Lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018. a, b, c
Kundu, P., Cohen, I., and Hu, H.: Fluid Mechanics, Edition, Academic
Press, New Delhi, https://doi.org/10.1016/C2009-0-63410-3, 2012. a
Le Meur, E., Gagliardini, O., Zwinger, T., and Ruokolainen, J.: Glacier Flow
Modelling: A Comparison of the Shallow Ice Approximation and the
Full-Stokes Solution, C. R. Phys., 5, 709–722,
https://doi.org/10.1016/j.crhy.2004.10.001, 2004. a
Leguy, G.: Chapter 7.1.5, in: The Effect of a Basal-Friction Parameterization
on Grounding-Line Dynamics in Ice-Sheet Models (PhD Thesis), New Mexico
Institute of Mining and Technology, 3723078, https://www.proquest.com/openview/e50f74521532de35c3c3e5d8141ee50f/1.pdf?pq-origsite=gscholar&cbl=18750
(last access: 22 January 2023), 2015. a, b
Leguy, G. R., Asay-Davis, X. S., and Lipscomb, W. H.: Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model, The Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, 2014. a
Leguy, G. R., Lipscomb, W. H., and Asay-Davis, X. S.: Marine ice sheet experiments with the Community Ice Sheet Model, The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021, 2021. a
Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., Martin, D., Morlighem, M., Pattyn, F., Pollard, D., Quiquet, A., Rodehacke, C., Seroussi, H., Sutter, J., Zhang, T., Van Breedam, J., Calov, R., DeConto, R., Dumas, C., Garbe, J., Gudmundsson, G. H., Hoffman, M. J., Humbert, A., Kleiner, T., Lipscomb, W. H., Meinshausen, M., Ng, E., Nowicki, S. M. J., Perego, M., Price, S. F., Saito, F., Schlegel, N.-J., Sun, S., and van de Wal, R. S. W.: Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, 2020. a
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage Accelerates Ice Shelf Instability and
Mass Loss in Amundsen Sea Embayment, P. Natl. Acad.
Sci. USA, 117, 24735–24741, https://doi.org/10.1073/pnas.1912890117, 2020. a
MacAyeal, D. R.: Large-Scale Ice Flow over a Viscous Basal Sediment: Theory
and Application to Ice Stream B, Antarctica, J. Geophys. Res.-Sol. Ea., 94, 4071–4087, https://doi.org/10.1029/JB094iB04p04071, 1989. a, b, c
Maier, N., Humphrey, N., Harper, J., and Meierbachtol, T.: Sliding Dominates
Slow-Flowing Margin Regions, Greenland Ice Sheet, Sci. Adv., 5,
eaaw5406, https://doi.org/10.1126/sciadv.aaw5406, 2019. a, b
Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet, The Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-727-2011, 2011. a
Mercer, J. H.: West Antarctic Ice Sheet and CO2 Greenhouse Effect: A
Threat of Disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978. a
Morland, L. W.: Unconfined Ice-Shelf Flow, in: Dynamics of the West
Antarctic Ice Sheet, edited by: Van der Veen, C. J. and Oerlemans, J.,
Glaciology and Quaternary Geology, Springer Netherlands,
99–116, https://doi.org/10.1007/978-94-009-3745-1_6, 1987. a
Morlighem, M.:
MEaSUREs BedMachine Antarctica, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/C2GFER6PTOS4, 2019. a
Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of Basal
Friction in Antarctica Using Exact and Incomplete Adjoints of a
Higher-Order Model: Antarctic basal friction inversion,
J. Geophys. Res.-Earth, 118, 1746–1753,
https://doi.org/10.1002/jgrf.20125, 2013. a, b
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: Deeply
Incised Submarine Glacial Valleys beneath the Greenland Ice Sheet, Nat.
Geosci., 7, 418–422, https://doi.org/10.1038/ngeo2167, 2014. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber,
J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined
With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017. a, b, c
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert,
A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R.,
van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep Glacial Troughs and
Stabilizing Ridges Unveiled beneath the Margins of the Antarctic Ice
Sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8,
2020. a, b, c, d, e, f, g
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained Increase in Ice Discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013,
Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069,
2014. a
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSUREs Phase-Based Antarctica Ice Velocity Map, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/PZ3NJ5RXRH10, 2019b. a
Nye, J. F.: The Flow of a Glacier in a Channel of Rectangular,
Elliptic or Parabolic Cross-Section, J. Glaciol., 5,
661–690, https://doi.org/10.3189/S0022143000018670, 1965. a
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh,
R. C., Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., Fürst,
J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten, M.,
Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem,
M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O., Seroussi, H.,
Thoma, M., and Wilkens, N.: Grounding-Line Migration in Plan-View Marine
Ice-Sheet Models: Results of the Ice2sea MISMIP3d Intercomparison,
J. Glaciol., 59, 410–422, https://doi.org/10.3189/2013JoG12J129, 2013. a, b, c
Pegler, S. S.: Suppression of Marine Ice Sheet Instability, J. Fluid
Mech., 857, 648–680, https://doi.org/10.1017/jfm.2018.742, 2018. a, b, c
Pegler, S. S., Kowal, K. N., Hasenclever, L. Q., and Worster, M. G.: Lateral
Controls on Grounding-Line Dynamics, J. Fluid Mech., 722, R1,
https://doi.org/10.1017/jfm.2013.140, 2013. a
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive
Dynamic Thinning on the Margins of the Greenland and Antarctic Ice
Sheets, Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009. a, b
Rayleigh: The Principle of Similitude, Nature, 95, 66–68,
https://doi.org/10.1038/095066c0, 1915. a, b
Raymond, C.: Shear Margins in Glaciers and Ice Sheets, J. Glaciol.,
42, 90–102, https://doi.org/10.3189/S0022143000030550, 1996. a
Reynolds, O.: An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the
Law of Resistance in Parallel Channels, Philos. T.
R. Soc. Lond., 174, 935–982, https://doi.org/10.1098/rstl.1883.0029, 1883. a
Rignot, E. and Mouginot, J.: Ice Flow in Greenland for the International
Polar Year 2008–2009, Geophys. Res. Lett., 39, L11501,
https://doi.org/10.1029/2012GL051634, 2012. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, Rapid Grounding Line Retreat of Pine Island, Thwaites,
Smith, and Kohler Glaciers, West Antarctica, from 1992 to 2011,
Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140,
2014. a
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J.,
and Morlighem, M.: Four Decades of Antarctic Ice Sheet Mass Balance from
1979–2017, P. Natl. Acad. Sci. USA, 116,
1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Schoof, C.: The Effect of Cavitation on Glacier Sliding, P.
Roy. Soc. A, 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C.: Ice Sheet Grounding Line Dynamics: Steady States, Stability,
and Hysteresis, J. Geophys. Res., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007. a, b, c, d
Schoof, C., Davis, A. D., and Popa, T. V.: Boundary layer models for calving marine outlet glaciers, The Cryosphere, 11, 2283–2303, https://doi.org/10.5194/tc-11-2283-2017, 2017. a
Sergienko, O. V. and Hindmarsh, R. C. A.: Regular Patterns in Frictional
Resistance of Ice-Stream Beds Seen by Surface Data Inversion,
Science, 342, 1086–1089, https://doi.org/10.1126/science.1243903, 2013. a, b, c
Sergienko, O. V. and Wingham, D. J.: Grounding Line Stability in a Regime of
Low Driving and Basal Stresses, J. Glaciol., 65, 833–849,
https://doi.org/10.1017/jog.2019.53, 2019. a
Sergienko, O. V., Creyts, T. T., and Hindmarsh, R. C. A.: Similarity of
Organized Patterns in Driving and Basal Stresses of Antarctic and
Greenland Ice Sheets beneath Extensive Areas of Basal Sliding,
Geophys. Res. Lett., 41, 3925–3932, https://doi.org/10.1002/2014GL059976,
2014. a, b, c
Seroussi, H. and Morlighem, M.: Representation of basal melting at the grounding line in ice flow models, The Cryosphere, 12, 3085–3096, https://doi.org/10.5194/tc-12-3085-2018, 2018. a
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot,
E., and Khazendar, A.: Continued Retreat of Thwaites Glacier, West
Antarctica, Controlled by Bed Topography and Ocean Circulation: Ice-ocean
modeling of thwaites glacier, Geophys. Res. Lett., 44, 6191–6199,
https://doi.org/10.1002/2017GL072910, 2017. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a, b
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater, T.,
Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett.,
46,
8174–8183, https://doi.org/10.1029/2019GL082182, 2019. a, b
The IMBIE team: Mass Balance of the Antarctic Ice Sheet from 1992 to
2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a, b
The IMBIE Team: Mass Balance of the Greenland Ice Sheet from 1992 to
2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020. a, b, c
Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine Ice-Sheet Profiles and
Stability under Coulomb Basal Conditions, J. Glaciol., 61,
205–215, https://doi.org/10.3189/2015JoG14J221, 2015. a
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice
Shelf, J. Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327,
1974. a
Wessem, J. M. V., Reijmer, C. H., Morlighem, M., Mouginot, J., Rignot, E.,
Medley, B., Joughin, I., Wouters, B., Depoorter, M. A., Bamber, J. L.,
Lenaerts, J. T. M., Berg, W. J. V. D., Broeke, M. R. V. D., and Meijgaard,
E. V.: Improved Representation of East Antarctic Surface Mass Balance in
a Regional Atmospheric Climate Model, J. Glaciol., 60, 761–770,
https://doi.org/10.3189/2014JoG14J051, 2014. a, b
Whillans, I. M.:
The Equation of Continuity and Its Application to the Ice Sheet Near “Byrd” Station, Antarctica,
J. Glaciol.,
18,
359–371,
https://doi.org/10.3189/S0022143000021055, 1977. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a
Zhang, T., Price, S. F., Hoffman, M. J., Perego, M., and Asay-Davis, X.: Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting, The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020, 2020. a
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Here we present a scaling relation that allows the comparison of the timescales of glaciers with...