Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-533-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-533-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new state-dependent parameterization for the free drift of sea ice
Charles Brunette
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, QC, Canada
L. Bruno Tremblay
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, QC, Canada
Robert Newton
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Related authors
No articles found.
Noemie Planat, Carolina Olivia Dufour, Camille Lique, Jan Klaus Rieck, Claude Talandier, and L. Bruno Tremblay
EGUsphere, https://doi.org/10.5194/egusphere-2025-3527, https://doi.org/10.5194/egusphere-2025-3527, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We detect and track mesoscale eddies in the Canadian Basin of the Arctic Ocean and describe their spatio-temporal characteristics in a high resolution pan-Arctic model. Results show eddies of typical size 12 km, lasting 10 days and travelling 11 km, with roughly an equal number of cyclones and anticyclones detected. Seasonal, decadal and interannual changes of the number of eddies detected show strong correlations with the ice cover, and with the mean circulation of the basin.
Jean-Francois Lemieux, Mathieu Plante, Nils Hutter, Damien Ringeisen, Bruno Tremblay, Francois Roy, and Philippe Blain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3831, https://doi.org/10.5194/egusphere-2024-3831, 2025
Short summary
Short summary
Sea ice models simulate angles between cracks that are too wide compared to observations. Ringeisen et al. argue that this is due to the flow rule which defines the fracture deformations. We implemented a non-normal flow rule. This flow rule also leads to angles that are too wide. This is a consequence of deformations that tend to align with the grid. Nevertheless, this flow rule could be used to optimize deformations while other parameters could be used to modify landfast ice and ice drift.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, Lekima Yakuden, and Frédérique Labelle
Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, https://doi.org/10.5194/essd-17-423-2025, 2025
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with complex, crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 1 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Antoine Savard and Bruno Tremblay
The Cryosphere, 18, 2017–2034, https://doi.org/10.5194/tc-18-2017-2024, https://doi.org/10.5194/tc-18-2017-2024, 2024
Short summary
Short summary
We include a suitable plastic damage parametrization in the standard viscous–plastic (VP) sea ice model to disentangle its effect from resolved model physics (visco-plastic with and without damage) on its ability to reproduce observed scaling laws of deformation. This study shows that including a damage parametrization in the VP model improves its performance in simulating the statistical behavior of fracture patterns. Therefore, a damage parametrization is a powerful tuning knob.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024, https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
Short summary
We developed a standard viscous–plastic sea-ice model based on the numerical framework called smoothed particle hydrodynamics. The model conforms to the theory within an error of 1 % in an idealized ridging experiment, and it is able to simulate stable ice arches. However, the method creates a dispersive plastic wave speed. The framework is efficient to simulate fractures and can take full advantage of parallelization, making it a good candidate to investigate sea-ice material properties.
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021, https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Short summary
We propose a generalized form for the damage parameterization such that super-critical stresses can return to the yield with different final sub-critical stress states. In uniaxial compression simulations, the generalization improves the orientation of sea ice fractures and reduces the growth of numerical errors. Shear and convergence deformations however remain predominant along the fractures, contrary to observations, and this calls for modification of the post-fracture viscosity formulation.
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021, https://doi.org/10.5194/tc-15-2873-2021, 2021
Short summary
Short summary
Deformations in the Arctic sea ice cover take the shape of narrow lines. High-resolution sea ice models recreate these deformation lines. Recent studies have shown that the most widely used sea ice model creates fracture lines with intersection angles larger than those observed and cannot create smaller angles. In our work, we change the way sea ice deforms post-fracture. This change allows us to understand the link between the sea ice model and intersection angles and create more acute angles.
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021, https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary
Short summary
Sea ice plays a crucial role in global energy and water budgets. To get a better simulation of sea ice, we coupled a sea ice model with an atmospheric and ocean model to form a fully coupled system. The sea ice simulation results of this coupled system demonstrated that a two-way coupled model has better performance in terms of sea ice, especially in summer. This indicates that sea-ice–ocean–atmosphere interaction plays a crucial role in controlling Arctic summertime sea ice distribution.
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478, https://doi.org/10.5194/tc-14-3465-2020, https://doi.org/10.5194/tc-14-3465-2020, 2020
Short summary
Short summary
Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Sea ice forecasting systems can predict the evolution of pressure. However, these systems have low spatial resolution (a few km) compared to the dimensions of ships. We study the downscaling of pressure from the km-scale to scales relevant for navigation. We find that the pressure applied on a ship beset in heavy ice conditions can be markedly larger than the pressure predicted by the forecasting system.
Cited articles
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.:
Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice,
J. Geophys. Res.-Oceans,
112, C8, https://doi.org/10.1029/2006JC003543, 2007. a
Aporta, C.:
Life on the ice: understanding the codes of a changing environment,
Polar Rec.,
38, 341–354, https://doi.org/10.1017/S0032247400018039, 2002. a
Armitage, T. W. K., Bacon, S., Ridout, A. L., Petty, A. A., Wolbach, S., and Tsamados, M.: Arctic Ocean surface geostrophic circulation 2003–2014, The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017, 2017b (data available at: http://www.cpom.ucl.ac.uk/dynamic_topography). a
Armitage, T. W., Manucharyan, G. E., Petty, A. A., Kwok, R., and Thompson, A. F.:
Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss,
Nat. Commun., 11, 1–8, https://doi.org/10.1038/s41467-020-14449-z, 2020. a
Belter, H. J., Krumpen, T., von Albedyll, L., Alekseeva, T. A., Birnbaum, G., Frolov, S. V., Hendricks, S., Herber, A., Polyakov, I., Raphael, I., Ricker, R., Serovetnikov, S. S., Webster, M., and Haas, C.: Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification, The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, 2021. a
Bouchat, A. and Tremblay, B.:
Energy dissipation in viscous-plastic sea-ice models,
J. Geophys. Res.-Oceans,
119, 976–994, https://doi.org/10.1002/2013JC009436, 2014. a, b
Berens, P.: Circular Statistics Toolbox (Directional Statistics), MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics, last access: 14 February 2022. a
Brodzik, M. J. and Knowles, K.:
Discrete global grids: a web book, chap. 5, EASE-Grid: A versatile set of equal-area projections and grids, in: Specialist Research Meetings – Papers and Reports,
National Center for Geographic Information & Analysis, https://escholarship.org/uc/item/9492q6sm (last access: August 2021),
2002. a
Brunette, C., Tremblay, B., and Newton, R.:
Winter Coastal Divergence as a Predictor for the Minimum Sea Ice Extent in the Laptev Sea,
J. Climate,
32, 1063–1080, https://doi.org/10.1175/JCLI-D-18-0169.1, 2019. a
Castellani, G., Losch, M., Ungermann, M., and Gerdes, R.:
Sea–ice drag as a function of deformation and ice cover: Effects on simulated sea ice and ocean circulation in the Arctic,
Ocean Model.,
128, 48–66, https://doi.org/10.1016/j.ocemod.2018.06.002, 2018. a
Cavalieri, D. J., Gloersen, P., and Campbell, W. J.:
Determination of sea ice parameters with the Nimbus 7 SMMR,
J. Geophys. Res.-Atmos.,
89, 5355–5369, https://doi.org/10.1029/JD089iD04p05355, 1984. a
Comiso, J. C.:
Characteristics of Arctic winter sea ice from satellite multispectral microwave observations,
J. Geophys. Res.-Oceans,
91, 975–994, https://doi.org/10.1029/JC091iC01p00975, 1986. a
Darby, D. A.:
Arctic perennial ice cover over the last 14 million years,
Paleoceanography,
23, 1, https://doi.org/10.1029/2007PA001479, 2008. a
Emery, W., Fowler, C., and Maslanik, J.:
Satellite Remote Sensing of Ice Motion,
in: Oceanographic applications of remote sensing,
edited by: Ikeda, M. and Dobson, F. W.,
CRC Press, Boca Raton, USA, 1995. a
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J., and Bacon, S.:
Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre,
Nat. Geosci.,
5, 194–197, https://doi.org/10.1038/NGEO1379, 2012. a
Gimbert, F., Jourdain, N. C., Marsan, D., Weiss, J., and Barnier, B.:
Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations,
J. Geophys. Res.-Oceans,
117, C11, https://doi.org/10.1029/2011JC007633, 2012a. a
Gimbert, F., Marsan, D., Weiss, J., Jourdain, N. C., and Barnier, B.: Sea ice inertial oscillations in the Arctic Basin, The Cryosphere, 6, 1187–1201, https://doi.org/10.5194/tc-6-1187-2012, 2012b. a, b, c
Goldstein, M. A., Lynch, A. H., Zsom, A., Arbetter, T., Chang, A., and Fetterer, F.:
The step-like evolution of Arctic open water,
Sci. Rep.-UK,
8, 1–9, https://doi.org/10.1038/s41598-018-35064-5, 2018. a
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G., Rinke, A., Walden, V. P., Granskog, M. A., and Hudson, S. R.:
Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer,
J. Climate,
32, 4121–4143, https://doi.org/10.1175/JCLI-D-18-0643.1, 2019. a
Haëntjens, N.: Scatter Plot colored by Kernel Density Estimate, MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/65728-scatter-plot-colored-by-kernel-density-estimate, last access: 14 February 2022. a
Harder, M. and Fischer, H.:
Sea ice dynamics in the Weddell Sea simulated with an optimized model,
J. Geophys. Res.-Oceans,
104, 11151–11162, https://doi.org/10.1029/1999JC900047, 1999. a
Heorton, H. D., Tsamados, M., Cole, S., Ferreira, A. M., Berbellini, A., Fox, M., and Armitage, T. W.:
Retrieving sea ice drag coefficients and turning angles from in situ and satellite observations using an inverse modeling framework,
J. Geophys. Res.-Oceans,
124, 6388–6413, https://doi.org/10.1029/2018JC014881, 2019. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita,
M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M.,
Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and
Thépaut, J.-N.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hibler, W.:
A dynamic thermodynamic sea ice model,
J. Phys. Oceanogr.,
9, 815–846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979. a, b, c
Hongwei, H., Ruibo, L., Peng, L., and Zhijun, L.:
Features of sea ice motion observed with ice buoys from the central Arctic Ocean to Fram Strait,
Advances in Polar Science,
31, 26–35, https://doi.org/10.13679/j.advps.2019.0020, 2020. a
Hwang, B.:
Inter-comparison of satellite sea ice motion with drifting buoy data,
Int. J. Remote Sens.,
34, 8741–8763, https://doi.org/10.1080/01431161.2013.848309, 2013. a
International Arctic Buoy Programme:
International Arctic Buoy Programme,
digital media, available at: http://iabp.apl.washington.edu/index.html (last access: January 2020), 2020. a
Inuksuk, A.:
On the nature of sea ice around Igloolik,
Can. Geogr.-Geogr. Can.,
55, 36–41, https://doi.org/10.1111/j.1541-0064.2010.00343.x, 2011. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., and Joseph, D.:
The NCEP/NCAR 40-year reanalysis project,
Am. Meteorol. Soc,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, 2019. a
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., and Tonboe, R.: Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions, The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, 2020. a
Kim, R., Tremblay, L. B., Brunette, C., and Newton, R.:
A Regional Seasonal Forecast Model of Arctic Minimum Sea Ice Extent: Reflected Solar Radiation versus Late Winter Coastal Divergence,
J. Climate,
34, 6097–6113, https://doi.org/10.1175/JCLI-D-20-0846.1, 2021. a
Kimura, N. and Wakatsuchi, M.:
Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere,
Geophys. Res. Lett.,
27, 3735–3738, https://doi.org/10.1029/2000GL011495, 2000. a, b, c, d
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack, E. C., McLaughlin, F. A., and Timmermans, M.-L.:
Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle,
J. Geophys. Res.-Oceans,
119, 1271–1305, https://doi.org/10.1002/2013JC008999, 2014. a, b
Krumpen, T., Janout, M., Hodges, K. I., Gerdes, R., Girard-Ardhuin, F., Hölemann, J. A., and Willmes, S.: Variability and trends in Laptev Sea ice outflow between 1992–2011, The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, 2013. a
Krupnik, I., Aporta, C., Gearheard, S., Laidler, G. J., and Holm, L. K.:
SIKU: knowing our ice,
Springer, Dordrecht, the Netherlands, 2010. a
Kwok, R., Schweiger, A., Rothrock, D., Pang, S., and Kottmeier, C.:
Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions,
J. Geophys. Res.-Oceans,
103, 8191–8214, https://doi.org/10.1029/97JC03334, 1998. a
Kwok, R., Spreen, G., and Pang, D.:
Arctic sea ice circulation and drift speed: Decadal trends and ocean currents,
J. Geophys. Res.: Oceans,
118, 2408–2425, https://doi.org/10.1002/jgrc.20191, 2013. a, b
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.:
Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic,
J. Geophys. Res.,
115, C10032, https://doi.org/10.1029/2009JC005958, 2010. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J.,
Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.:
CryoSat-2 estimates of Arctic sea ice thickness and volume,
Geophys. Res. Lett.,
40, 732–737, 2013. a
Lind, S., Ingvaldsen, R. B., and Furevik, T.:
Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import,
Nat. Clim. Change,
8, 634–639, https://doi.org/10.1038/s41558-018-0205-y, 2018. a
Lindsay, R. and Zhang, J.:
Assimilation of ice concentration in an ice–ocean model,
J. Atmos. Ocean. Tech.,
23, 742–749, https://doi.org/10.1175/JTECH1871.1, 2006. a
Lu, P., Li, Z., Cheng, B., and Leppäranta, M.:
A parameterization of the ice–ocean drag coefficient,
J. Geophys. Res.-Oceans,
116, C7, https://doi.org/10.1029/2010JC006878, 2011. a
Lu, P., Li, Z., and Han, H.:
Introduction of parameterized sea ice drag coefficients into ice free-drift modeling,
Acta Oceanol. Sin.,
35, 53–59, https://doi.org/10.1007/s13131-016-0796-y, 2016. a, b, c
Lüpkes, C. and Gryanik, V. M.:
A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models,
J. Geophys. Res.-Atmos.,
120, 552–581, https://doi.org/10.1002/2014JD022418, 2015. a
Maeda, K., Kimura, N., and Yamaguchi, H.:
Temporal and spatial change in the relationship between sea-ice motion and wind in the Arctic,
Polar Res.,
39, 10–33265, https://doi.org/10.33265/polar.v39.3370, 2020. a, b, c, d
Mahoney, A. R., Hutchings, J. K., Eicken, H., and Haas, C.:
Changes in the Thickness and Circulation of Multiyear Ice in the Beaufort Gyre Determined From Pseudo-Lagrangian Methods from 2003–2015,
J. Geophys. Res.-Oceans,
124, 5618–5633, https://doi.org/10.1029/2018JC014911, 2019. a
McPhee, M. G.:
An analysis of pack ice drift in summer,
in: Sea ice processes and models,
edited by: Pritchard, R. S., University of Washington Press, 62–75, 1980. a
McPhee, M. G.:
Intensification of geostrophic currents in the Canada Basin, Arctic Ocean,
J. Climate,
26, 3130–3138, https://doi.org/10.1175/JCLI-D-12-00289.1, 2013. a, b, c, d
Meier, W. N. and Dai, M.:
High-resolution sea-ice motions from AMSR-E imagery,
Ann. Glaciol.,
44, 352–356, https://doi.org/10.3189/172756406781811286, 2006. a
Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3, Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/N59P2ZTG, 2017. a, b
Meneghello, G., Marshall, J., Campin, J.-M., Doddridge, E., and Timmermans, M.-L.:
The ice–ocean governor: Ice–ocean stress feedback limits Beaufort Gyre spin-up,
Geophys. Res. Lett.,
45, 11–293, https://doi.org/10.1029/2018GL080171, 2018. a
Nansen, F.:
The Norwegian North polar expedition, 1893–1896: scientific results, vol. 6,
Longmans, Green and Company, London, 1902. a
Newton, R., Pfirman, S., Tremblay, B., and DeRepentigny, P.:
Increasing transnational sea-ice exchange in a changing Arctic Ocean,
Earths Future,
5, 633–647, https://doi.org/10.1002/2016EF000500, 2017. a
Nikolaeva, A. J. and Sesterikov, N. P.:
A method of calculation of ice conditions (on the example of the Laptev Sea), vol. 74,
Amerind Publishing, New Delhi, published for the Office of Polar Programs and the
National Science Foundation, Washington, D.C. by Amerind, 1970. a
Nøst, O. A. and Isachsen, P. E.:
The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics,
J. Mar. Res.,
61, 175–210, https://doi.org/10.1357/002224003322005069, 2003. a
Olason, E. and Notz, D.:
Drivers of variability in A rctic sea-ice drift speed,
J. Geophys. Res.-Oceans,
119, 5755–5775, https://doi.org/10.1002/2014JC009897, 2014. a
Park, H.-S. and Stewart, A. L.: An analytical model for wind-driven Arctic summer sea ice drift, The Cryosphere, 10, 227–244, https://doi.org/10.5194/tc-10-227-2016, 2016. a, b
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M., Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M., Jennings, A. E., Miller, G. H., O'Regan, M.,
Savelle, J., Serreze, M., St. John, K., White, J. W. C., and Wolff, E.:
History of sea ice in the Arctic,
Quaternary Sci. Rev.,
29, 1757–1778, https://doi.org/10.1016/j.quascirev.2010.02.010, 2010. a
Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M.-L., Williams, W., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D.,
Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino,
S., Itoh, M., Kang, S.-H., Cho, K.-H., Tateyama, K., and Zhao, J.:
Analysis of the Beaufort Gyre freshwater content in 2003–2018,
J. Geophys. Res.-Oceans,
124, 9658–9689, https://doi.org/10.1029/2019JC015281, 2019. a
Rabinovich, A. B., Shevchenko, G. V., and Thomson, R. E.:
Sea ice and current response to the wind: A vector regressional analysis approach,
J. Atmos. Ocean. Tech.,
24, 1086–1101, https://doi.org/10.1175/JTECH2015, 2007. a
Rampal, P., Weiss, J., and Marsan, D.:
Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007,
J. Geophys. Res.-Oceans,
114, C5, https://doi.org/10.1029/2008JC005066, 2009. a, b, c, d
Regan, H., Lique, C., Talandier, C., and Meneghello, G.:
Response of Total and Eddy Kinetic Energy to the Recent Spinup of the Beaufort Gyre,
J. Phys. Oceanogr.,
50, 575–594, https://doi.org/10.1175/JPO-D-19-0234.1, 2020. a
Regan, H. C., Lique, C., and Armitage, T. W.:
The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations,
J. Geophys. Res.-Oceans,
124, 844–862, https://doi.org/10.1029/2018JC014379, 2019. a
Roberts, A.: ncpolarm, MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/30414-ncpolarm (last access: 14 February 2022), 2020. a
Rothrock, D., Percival, D., and Wensnahan, M.:
The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data,
J. Geophys. Res.-Oceans,
113, C5, https://doi.org/10.1029/2007JC004252, 2008. a
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume,
J. Geophys. Res.-Oceans,
116, C8, https://doi.org/10.1029/2011JC007084, 2011. a
Steiner, N.:
Introduction of variable drag coefficients into sea-ice models,
Ann. Glaciology,
33, 181–186, https://doi.org/10.3189/172756401781818149, 2001. a
Stoffelen, A.:
Toward the true near-surface wind speed: Error modeling and calibration using triple collocation,
J. Geophys. Res.-Oceans,
103, 7755–7766, https://doi.org/10.1029/97JC03180, 1998. a
Sumata, H., Lavergne, T., Girard-Ardhuin, F., Kimura, N., Tschudi, M. A., Kauker, F., Karcher, M., and Gerdes, R.:
An intercomparison of Arctic ice drift products to deduce uncertainty estimates,
J. Geophys. Res.-Oceans,
119, 4887–4921, https://doi.org/10.1002/2013JC009724, 2014. a
Tandon, N. F., Kushner, P. J., Docquier, D., Wettstein, J. J., and Li, C.:
Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate Models,
J. Geophys. Res.-Oceans,
123, 4338–4359, https://doi.org/10.1029/2017JC013697, 2018. a
Thomas, D.:
The quality of sea ice velocity estimates,
J. Geophys. Res.-Oceans,
104, 13627–13652, https://doi.org/10.1029/1999JC900086, 1999. a, b, c
Togunov, R. R., Klappstein, N. J., Lunn, N. J., Derocher, A. E., and Auger-Méthé, M.: Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada, The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020, 2020. a, b
Toyoda, T., Kimura, N., Urakawa, L. S., Tsujino, H., Nakano, H., Sakamoto, K., Yamanaka, G., Komatsu, K. K., Matsumura, Y., and Kawaguchi, Y.:
Improved representation of Arctic sea ice velocity field in ocean–sea ice models based on satellite observations,
Clim. Dynam.,
57, 2863–2887, https://doi.org/10.1007/s00382-021-05843-4, 2021. a, b
Tremblay, L., Schmidt, G., Pfirman, S., Newton, R., and DeRepentigny, P.:
Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover?,
Philos. T. R. Soc. A,
373, 20140168, https://doi.org/10.1098/rsta.2014.0168, 2015. a
Tremblay, L.-B. and Mysak, L.:
The possible effects of including ridge-related roughness in air–ice drag parameterization: a sensitivity study,
Ann. Glaciol.,
25, 22–25, https://doi.org/10.3189/S0260305500013744, 1997. a, b, c
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L., Kurtz, N., Laxon, S. W., and Bacon, S.:
Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice,
J. Phys. Oceanogr.,
44, 1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014. a
Tschudi, M., Fowler, C., Maslanik, J., and Stroeve, J.:
Tracking the movement and changing surface characteristics of Arctic sea ice,
IEEE J. Sel. Top. Appl.,
3, 536–540, https://doi.org/10.1109/JSTARS.2010.2048305, 2010. a
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.:
EASE-Grid Sea Ice Age, Version 4, digital media, Boulder, Colorado USA: National Snow and Ice Data Center Distributed
Active Archive Center, https://doi.org/10.5067/UTAV7490FEPB,
2019a. a
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/INAWUWO7QH7B, 2019b. a, b, c, d, e, f, g, h, i, j
Uotila, J.:
Observed and modelled sea-ice drift response to wind forcing in the northern Baltic Sea,
Tellus A,
53, 112–128, https://doi.org/10.1034/j.1600-0870.2001.01172.x, 2001. a, b
Williams, J., Tremblay, B., Newton, R., and Allard, R.:
Dynamic preconditioning of the minimum September sea-ice extent,
J. Climate,
29, 5879–5891, https://doi.org/10.1175/JCLI-D-15-0515.1, 2016. a
Yu, X., Rinke, A., Dorn, W., Spreen, G., Lüpkes, C., Sumata, H., and Gryanik, V. M.: Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM–NAOSIM, The Cryosphere, 14, 1727–1746, https://doi.org/10.5194/tc-14-1727-2020, 2020.
a
Short summary
Sea ice motion is a versatile parameter for monitoring the Arctic climate system. In this contribution, we use data from drifting buoys, winds, and ice thickness to parameterize the motion of sea ice in a free drift regime – i.e., flowing freely in response to the forcing from the winds and ocean currents. We show that including a dependence on sea ice thickness and taking into account a climatology of the surface ocean circulation significantly improves the accuracy of sea ice motion estimates.
Sea ice motion is a versatile parameter for monitoring the Arctic climate system. In this...