Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study
Nicolas Guillaume Alexandre Mokus
CORRESPONDING AUTHOR
Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
Fabien Montiel
Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
Related authors
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
Geosci. Model Dev., 19, 261–288, https://doi.org/10.5194/gmd-19-261-2026, https://doi.org/10.5194/gmd-19-261-2026, 2026
Short summary
Short summary
Arctic sea ice recedes, and is thus more exposed to waves, which can fracture continuous pack ice into smaller floes. These are more mobile and easier to melt. Ice fracture itself is not well understood, because of harsh field conditions. We propose a novel criterion parametrising this process, and incorporate it into a numerical model that simulates wave propagation. This criterion can be compared to existing ones. We relate our results to lab experiments, and find qualitative agreement.
Sébastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
The Cryosphere, 19, 6927–6941, https://doi.org/10.5194/tc-19-6927-2025, https://doi.org/10.5194/tc-19-6927-2025, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
Geosci. Model Dev., 19, 261–288, https://doi.org/10.5194/gmd-19-261-2026, https://doi.org/10.5194/gmd-19-261-2026, 2026
Short summary
Short summary
Arctic sea ice recedes, and is thus more exposed to waves, which can fracture continuous pack ice into smaller floes. These are more mobile and easier to melt. Ice fracture itself is not well understood, because of harsh field conditions. We propose a novel criterion parametrising this process, and incorporate it into a numerical model that simulates wave propagation. This criterion can be compared to existing ones. We relate our results to lab experiments, and find qualitative agreement.
Sébastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
The Cryosphere, 19, 6927–6941, https://doi.org/10.5194/tc-19-6927-2025, https://doi.org/10.5194/tc-19-6927-2025, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Cited articles
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of
summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res.-Oceans, 117, C06025, https://doi.org/10.1029/2011jc007221,
2012. a
Azzalini, A.: Statistical inference: based on the likelihood, in: Monographs on
statistics and applied probability, 1st edn., 68, Chapman & Hall/CRC, Boca Raton,
New York, ISBN 9780412606502, 1996. a
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020. a, b, c
Bennetts, L. G. and Squire, V. A.: On the calculation of an attenuation
coefficient for transects of ice-covered ocean, P. Roy.
Soc. A-Math. Phy., 468, 136–162,
https://doi.org/10.1098/rspa.2011.0155, 2011. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017. a, b
Bonath, V., Zhaka, V., and Sand, B.: Field measurements on the behavior of
brash ice, in: Proceedings of the 25th International Conference on Port and
Ocean Engineering under Arctic Conditions, Delft, The Netherlands, 9–13 June 2019, ISSN 0376-6756, https://www.poac.com/Papers/2019/pdf/POAC19-106.pdf (last access: 12 September 2022), 2019. a
Boutin, G., Ardhuin, F., Dumont, D., Sévigny, C., Girard-Ardhuin, F., and
Accensi, M.: Floe Size Effect on Wave-Ice Interactions: Possible Effects,
Implementation in Wave Model, and Evaluation, J. Geophys.
Res.-Oceans, 123, 4779–4805, https://doi.org/10.1029/2017jc013622, 2018. a, b
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020. a, b, c
Boutin, G., Williams, T., Rampal, P., Olason, E., and Lique, C.: Wave–sea-ice interactions in a brittle rheological framework, The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, 2021. a, b, c
Castruccio, F. S., Ruprich-Robert, Y., Yeager, S. G., Danabasoglu, G., Msadek,
R., and Delworth, T. L.: Modulation of Arctic Sea Ice Loss by Atmospheric
Teleconnections from Atlantic Multidecadal Variability, J. Climate,
32, 1419–1441, https://doi.org/10.1175/jcli-d-18-0307.1, 2019. a
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in
Empirical Data, SIAM Review, 51, 661–703, https://doi.org/10.1137/070710111, 2009. a, b, c
Collins, C. O., Rogers, W. E., Marchenko, A., and Babanin, A. V.: In situ
measurements of an energetic wave event in the Arctic marginal ice zone,
Geophys. Res. Lett., 42, 1863–1870, https://doi.org/10.1002/2015gl063063,
2015. a
Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H.:
A Supernodal Approach to Sparse Partial Pivoting, SIAM J. Matrix
Anal. A., 20, 720–755, https://doi.org/10.1137/s0895479895291765,
1999. a
Dolatshah, A., Nelli, F., Bennetts, L. G., Alberello, A., Meylan, M. H., Monty,
J. P., and Toffoli, A.: Letter: Hydroelastic interactions between water waves
and floating freshwater ice, Phys. Fluids, 30, 091702,
https://doi.org/10.1063/1.5050262, 2018. a
Dumas-Lefebvre, E. and Dumont, D.: Aerial observations of sea ice break-up by ship waves, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-328, in review, 2021. a, b, c
Dupont, F., Dumont, D., Lemieux, J.-F., Dumas-Lefebvre, E., and Caya, A.: A probabilistic seabed–ice keel interaction model, The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, 2022. a
Fox, C. and Squire, V. A.: Reflection and transmission characteristics at the
edge of shore fast sea ice, J. Geophys. Res., 95, 11629,
https://doi.org/10.1029/jc095ic07p11629, 1990. a
Fox, C. and Squire, V. A.: On the oblique reflexion and transmission of ocean
waves at shore fast sea ice, Philos. T. Roy. Soc.
A, 347, 185–218,
https://doi.org/10.1098/rsta.1994.0044, 1994. a, b
Herman, A.: Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model, The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, 2017. a, b, c, d
Herman, A., Evers, K.-U., and Reimer, N.: Floe-size distributions in laboratory ice broken by waves, The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, 2018. a
Herman, A., Wenta, M., and Cheng, S.: Sizes and Shapes of Sea Ice Floes Broken
by Waves – A Case Study From the East Antarctic Coast, Front.
Earth Sci., 9, 655977, https://doi.org/10.3389/feart.2021.655977, 2021. a, b, c, d
Horvat, C. and Roach, L. A.: WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture, Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, 2022. a, b
Horvat, C. and Tziperman, E.: The evolution of scaling laws in the sea ice floe
size distribution, J. Geophys. Res.-Oceans, 122, 7630–7650,
https://doi.org/10.1002/2016jc012573, 2017. a
Horvat, C., Tziperman, E., and Campin, J.-M.: Interaction of sea ice floe size,
ocean eddies, and sea ice melting, Geophys. Res. Lett., 43,
8083–8090, https://doi.org/10.1002/2016gl069742, 2016. a
Huang, H.-P.: Ice formation in frequently transited navigation channels, PhD
thesis, The University of Iowa, ISBN 9798207503257, 1988. a
Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F.,
DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N.,
Jean-Francois Lemieux, Osinski, R., Rasmussen, T., Ribergaard, M., Roberts,
A., Francois Roy, Turner, M., and Worthen, D.: CICE-Consortium/CICE: CICE
Version 6, Zenodo [code], https://doi.org/10.5281/zenodo.1205674, 2021. a
Inoue, J.: Ice floe distribution in the Sea of Okhotsk in the period when
sea-ice extent is advancing, Geophys. Res. Lett., 31, L20303,
https://doi.org/10.1029/2004gl020809, 2004. a
Keller, J. B.: Gravity waves on ice-covered water, J. Geophys.
Res.-Oceans, 103, 7663–7669, https://doi.org/10.1029/97jc02966, 1998. a
Kish, L.: Survey sampling, John Wiley New York, ISBN 9780471109495, 1965. a
Kohout, A. and Williams, M.: Waves in-ice observations made during the SIPEX II
voyage of the Aurora Australis, 2012, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.4225/15/53266BEC9607F, 2015. a
Kolmogoroff, A.: The logarithmically normal law of distribution of
dimensions of particles when broken into small parts, in: CR (Doklady) Acad. Sci.
URSS (NS), vol. 31, pp. 99–101, 1941. a
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses
and coupled variability (1958–2018), Environ. Res.
Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. a
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi,
D.: Thinning and volume loss of the Arctic Ocean sea ice cover:
2003–2008, J. Geophys. Res., 114, C07005,
https://doi.org/10.1029/2009jc005312, 2009. a
Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for Normality with Mean and
Variance Unknown, J. Am. Stat. Assoc., 62,
399–402, https://doi.org/10.1080/01621459.1967.10482916, 1967. a
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J.
Am. Stat. Assoc., 46, 68–78,
https://doi.org/10.1080/01621459.1951.10500769, 1951. a
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1,
2018. a
Meylan, M. and Squire, V. A.: The response of ice floes to ocean waves, J. Geophys. Res., 99, 891–900, https://doi.org/10.1029/93jc02695, 1994. a
Meylan, M. H., Bennetts, L. G., and Kohout, A. L.: In situ measurements and
analysis of ocean waves in the Antarctic marginal ice zone, Geophys.
Res. Lett., 41, 5046–5051, https://doi.org/10.1002/2014gl060809, 2014. a
Mokus, N. and Montiel, F.: Model code and simulation results for the
investigation of a wave-generated floe size distribution, Figshare [code and data set],
https://doi.org/10.6084/m9.figshare.17303927, 2021. a
Mokus, N. and Montiel, F.: Floe size distributions in irregular sea states, in:
Proceedings of the 37th International Workshop on Water Waves and Floating
Bodies, Giardini Naxos, Italy, 10–13 April 2022, 106–109, ISBN 9788876170539, http://www.iwwwfb.org/Abstracts/iwwwfb37/IWWWFB37GLOBAL027.pdf (last access: 12 September 2022), 2022a. a
Montiel, F. and Mokus, N.: Theoretical framework for the emergent floe size distribution in the marginal ice zone: the case for lognormality,
Phil. Trans. R. Soc. A, 380, 20210257, https://doi.org/10.1098/rsta.2021.0257,
2022b. a, b
Montiel, F., Bennetts, L., and Squire, V.: The transient response of floating
elastic plates to wavemaker forcing in two dimensions, J. Fluid.
Struct., 28, 416–433, https://doi.org/10.1016/j.jfluidstructs.2011.10.007, 2012. a
Montiel, F., Squire, V. A., and Bennetts, L. G.: Attenuation and directional
spreading of ocean wave spectra in the marginal ice zone, J. Fluid
Mech., 790, 492–522, https://doi.org/10.1017/jfm.2016.21, 2016. a, b
Montiel, F., Squire, V. A., Doble, M., Thomson, J., and Wadhams, P.:
Attenuation and Directional Spreading of Ocean Waves During a Storm Event in
the Autumn Beaufort Sea Marginal Ice Zone, J. Geophys. Res.-Oceans, 123, 5912–5932, https://doi.org/10.1029/2018jc013763, 2018. a
Montiel, F., Kohout, A. L., and Roach, L. A.: Physical Drivers of Ocean Wave
Attenuation in the Marginal Ice Zone, J. Phys. Oceanogr., 52,
889–906, https://doi.org/10.1175/jpo-d-21-0240.1, 2022. a
Mosig, J. E. M.: Contemporary wave–ice interaction models, PhD thesis,
University of Otago, http://hdl.handle.net/10523/7958, 2018. a
Mosig, J. E. M., Montiel, F., and Squire, V. A.: Comparison of
viscoelastic-type models for ocean wave attenuation in ice-covered seas,
J. Geophys. Res.-Oceans, 120, 6072–6090,
https://doi.org/10.1002/2015jc010881, 2015. a, b
Ochi, M. K.: Ocean waves: the Stochastic Approach, vol. 6, Cambridge University
Press, ISBN 9780521017671, 2005. a
Paget, M., Worby, A. P., and Michael, K. J.: Determining the floe-size
distribution of East Antarctic sea ice from digital aerial photographs,
Ann. Glaciol., 33, 94–100, https://doi.org/10.3189/172756401781818473, 2001. a
Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice
cover: Combined impact of preconditioning and an August storm, Geophys.
Res. Lett., 40, 1356–1361, https://doi.org/10.1002/grl.50349, 2013. a
Passerotti, G., Bennetts, L. G., von Bock und Polach, F., Alberello, A.,
Puolakka, O., Dolatshah, A., Monbaliu, J., and Toffoli, A.: Interactions
between irregular wave fields and sea ice: A physical model for wave
attenuation and ice break up, J. Phys. Oceanogr., 52, 1431–1446, https://doi.org/10.1175/jpo-d-21-0238.1, 2022. a
Passerotti, G., Bennetts, L. G., von Bock und Polach, F., Alberello, A.,
Puolakka, O., Dolatshah, A., Monbaliu, J., and Toffoli, A.: Interactions
between Irregular Wave Fields and Sea Ice: A Physical Model for Wave
Attenuation and Ice Breakup in an Ice Tank, J. Phys. Oceanogr.,
52, 1431–1446, https://doi.org/10.1175/jpo-d-21-0238.1, 2022. a
Perovich, D. K. and Jones, K. F.: The seasonal evolution of sea ice floe size
distribution, J. Geophys. Res.-Oceans, 119, 8767–8777,
https://doi.org/10.1002/2014jc010136, 2014. a
Pierson, W. J. and Moskowitz, L.: A proposed spectral form for fully developed
wind seas based on the similarity theory of S. A. Kitaigorodskii, J.
Geophys. Res., 69, 5181–5190, https://doi.org/10.1029/jz069i024p05181, 1964. a
Roach, L. A., Bitz, C. M., Horvat, C., and Dean, S. M.: Advances in Modeling
Interactions Between Sea Ice and Ocean Surface Waves, J. Adv.
Model.Earth Sy., 11, 4167–4181, https://doi.org/10.1029/2019ms001836, 2019. a, b, c
Robinson, N. and Palmer, S.: A modal analysis of a rectangular plate floating
on an incompressible liquid, J. Sound Vib. 142, 453–460,
https://doi.org/10.1016/0022-460x(90)90661-i, 1990. a
Rothrock, D. A. and Thorndike, A. S.: Measuring the sea ice floe size
distribution, J. Geophys. Res., 89, 6477–6486,
https://doi.org/10.1029/jc089ic04p06477, 1984. a, b, c
Santi, F. D. and Olla, P.: Effect of small floating disks on the propagation of
gravity waves, Fluid Dyn. Res., 49, 025512,
https://doi.org/10.1088/1873-7005/aa59e1, 2017. a
Squire, V. and Fox, C.: On ice coupled waves: a comparison of data and theory,
in: Advances in ice technology: Proc. 3rd Int. Conf. on Ice Technology, Computational Mechanics Publications Cambridge, MA,
269–280, 1992. a
Squire, V. A.: Ocean Wave Interactions with Sea Ice: A Reappraisal, Annu.
Review Fluid Mech., 52, 37–60,
https://doi.org/10.1146/annurev-fluid-010719-060301, 2020. a
Squire, V. A. and Montiel, F.: Evolution of Directional Wave Spectra in the
Marginal Ice Zone: A New Model Tested with Legacy Data, J. Phys.
Oceanogr., 46, 3121–3137, https://doi.org/10.1175/jpo-d-16-0118.1, 2016. a
Squire, V. A. and Moore, S. C.: Direct measurement of the attenuation of ocean
waves by pack ice, Nature, 283, 365–368, https://doi.org/10.1038/283365a0, 1980. a
Steele, M.: Sea ice melting and floe geometry in a simple ice-ocean model,
J. Geophys. Res.-Oceans, 97, 17729–17738,
https://doi.org/10.1029/92jc01755, 1992. a
Steer, A., Worby, A., and Heil, P.: Observed changes in sea-ice floe size
distribution during early summer in the western Weddell Sea, Deep-Sea
Res. Pt. II, 55, 933–942,
https://doi.org/10.1016/j.dsr2.2007.12.016, 2008. a
Stern, H. L., Schweiger, A. J., Zhang, J., and Steele, M.: On reconciling
disparate studies of the sea-ice floe size distribution, Elementa: Science of
the Anthropocene, 6, 1–16, https://doi.org/10.1525/elementa.304, 2018. a, b, c
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501,
https://doi.org/10.1029/2007gl029703, 2007. a
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean,
Geophys. Res. Lett., 41, 3136–3140, https://doi.org/10.1002/2014gl059983,
2014. a
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The thickness
distribution of sea ice, J. Geophys. Res., 80, 4501–4513,
https://doi.org/10.1029/jc080i033p04501, 1975. a
Toyota, T., Takatsuji, S., and Nakayama, M.: Characteristics of sea ice floe
size distribution in the seasonal ice zone, Geophys. Res. Lett., 33, L02616,
https://doi.org/10.1029/2005gl024556, 2006. a
Toyota, T., Haas, C., and Tamura, T.: Size distribution and shape properties of
relatively small sea-ice floes in the Antarctic marginal ice zone in late
winter, Deep-Sea Res. Pt. II, 58,
1182–1193, https://doi.org/10.1016/j.dsr2.2010.10.034, 2011. a
Vaughan, G. L. and Squire, V. A.: Scattering of ice coupled waves by a sea-ice
sheet with random thickness, Wave. Random Complex, 17, 357–380,
https://doi.org/10.1080/17455030701250467, 2007. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Wadhams, P.: Attenuation of swell by sea ice, J. Geophys. Res.,
78, 3552–3563, https://doi.org/10.1029/jc078i018p03552, 1973. a
Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M., and Moore, S. C.: The
attenuation rates of ocean waves in the marginal ice zone, J.
Geophys. Res., 93, 6799–6818, https://doi.org/10.1029/jc093ic06p06799, 1988. a
Wang, R. and Shen, H. H.: Gravity waves propagating into an ice-covered ocean:
A viscoelastic model, J. Geophys. Res., 115, C06024,
https://doi.org/10.1029/2009jc005591, 2010. a
Wang, Y., Holt, B., Rogers, W. E., Thomson, J., and Shen, H. H.: Wind and wave
influences on sea ice floe size and leads in the Beaufort and Chukchi Seas
during the summer-fall transition 2014, J. Geophys. Res.-Oceans, 121, 1502–1525, https://doi.org/10.1002/2015jc011349, 2016. a
Williams, T. and Porter, R.: The effect of submergence on the scattering by the
interface between two semi-infinite sheets, J. Fluid. Struct.,
25, 777–793, https://doi.org/10.1016/j.jfluidstructs.2009.02.001, 2009. a, b
Williams, T. D., Rampal, P., and Bouillon, S.: Wave–ice interactions in the neXtSIM sea-ice model, The Cryosphere, 11, 2117–2135, https://doi.org/10.5194/tc-11-2117-2017, 2017. a, b
Williams, T. D. C.: Reflections on ice: scattering of flexural gravity waves
by irregularities in Arctic and Antarctic ice sheets, PhD thesis,
University of Otago, http://hdl.handle.net/10523/8154 (last access: 12 September 2022), 2006. a
Zhang, J., Schweiger, A., Steele, M., and Stern, H.: Sea ice floe size
distribution in the marginal ice zone: Theory and numerical experiments,
J. Geophys. Res.-Oceans, 120, 3484–3498,
https://doi.org/10.1002/2015jc010770, 2015. a
Zhang, L., Delworth, T. L., Cooke, W., and Yang, X.: Natural variability of
Southern Ocean convection as a driver of observed climate trends, Nat.
Clim. Change, 9, 59–65, https://doi.org/10.1038/s41558-018-0350-3, 2018. a
Short summary
On the fringes of polar oceans, sea ice is easily broken by waves. As small pieces of ice, or floes, are more easily melted by the warming waters than a continuous ice cover, it is important to incorporate these floe sizes in climate models. These models simulate climate evolution at the century scale and are built by combining specialised modules. We study the statistical distribution of floe sizes under the impact of waves to better understand how to connect sea ice modules to wave modules.
On the fringes of polar oceans, sea ice is easily broken by waves. As small pieces of ice, or...