Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observed mechanism for sustained glacier retreat and acceleration in response to ocean warming around Greenland
Evan Carnahan
CORRESPONDING AUTHOR
Institute for Geophysics, The University of Texas, Austin, TX, USA
Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, USA
Department of Geological Sciences, The University of Texas, Austin, TX, USA
Ginny Catania
Institute for Geophysics, The University of Texas, Austin, TX, USA
Department of Geological Sciences, The University of Texas, Austin, TX, USA
Timothy C. Bartholomaus
Department of Geological Sciences, University of Idaho, Moscow, ID, USA
Related authors
No articles found.
Kevin Shionalyn, Ginny Catania, Daniel Trugman, Michael Shahin, Leigh Stearns, and Denis Felikson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3483, https://doi.org/10.5194/egusphere-2025-3483, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The ocean-facing front of a glacier changes with the seasons. We know this cycle is controlled by the shape and speed of the glacier as well as by the climate, but we do not have a full understanding of these processes. Our study uses 20 years of data and a machine learning model to predict this pattern and identifies which factors matter most. We find that while several factors influence the seasonal cycle, the shape of the glacier plays a key role in how much a glacier changes annually.
Andrew O. Hoffman, Paul T. Summers, Jenny Suckale, Knut Christianson, Ginny Catania, and Howard Conway
EGUsphere, https://doi.org/10.5194/egusphere-2025-1239, https://doi.org/10.5194/egusphere-2025-1239, 2025
Short summary
Short summary
In Antarctica, fast-flowing ice streams drive most ice loss. Radar data from Conway Ice Ridge reveal that the van der Veen and Mercer Ice Streams were wider ~3000 years ago and narrowed progressively. Numerical modeling demonstrates that small thickness changes can rapidly alter shear-margin locations. These findings offer crucial insights into Late Holocene Ice Sheet readvance.
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024, https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary
Short summary
The melting of ice mélange, or dense packs of icebergs and sea ice in glacial fjords, can influence the water column by releasing cold fresh water deep under the ocean surface. However, direct observations of this process have remained elusive. We use measurements of ocean temperature, salinity, and velocity bookending an episodic ice mélange event to show that this meltwater input changes the density profile of a glacial fjord and has implications for understanding tidewater glacier change.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin
The Cryosphere, 17, 2701–2704, https://doi.org/10.5194/tc-17-2701-2023, https://doi.org/10.5194/tc-17-2701-2023, 2023
Short summary
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as
negligiblein ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
Cited articles
Amundson, J. M., Fahnestock, M. A., Truffer, M., Brown, J., Brown, J., Lüthi,
M. P., and Motyka, R. J.: Ice mélange dynamics and implications for
terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys.
Res., 115, F01005, https://doi.org/10.1029/2009jf001405, 2010. a, b
Andrews, J. T., Milliman, J. D., Jennings, A. E., Rynes, N., and Dwyer, J.:
Sediment Thicknesses and Holocene Glacial Marine Sedimentation Rates in
Three East Greenland Fjords (ca. 68° N)1, J. Geol., 102, 669–683, 1994. a
Bartholomaus, T. C., Stearns, L. A., Sutherland, D. A., Shroyer, E. L., Nash,
J. D., Walker, R. T., Catania, G. A., Felikson, D., Carroll, D., Fried,
M. J., Noël, B. P. Y., and van den Broeke, M. R.: Contrasts in the response
of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland,
Ann. Glaciol., 57, 25–38, https://doi.org/10.1017/aog.2016.19, 2016. a, b, c, d
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M.,
Mouginot, J., Moon, T., Larour, E. Y., and Humbert, A.: The mechanisms
behind Jakobshavn Isbrae's acceleration and mass loss: A 3-D thermomechanical
model study, Geophys. Res. Lett., 44, 6252–6260,
https://doi.org/10.1002/2017gl073309, 2017. a, b, c, d, e
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J., Bartholomaus,
T. C., Morlighem, M., Shroyer, E. L., and Nash, J. D.: Geometric Controls on
Tidewater Glacier Retreat in Central Western Greenland, J.
Geophys. Res.-Earth, 123, 2024–2038,
https://doi.org/10.1029/2017jf004499, 2018. a, b, c, d, e, f, g
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G. S., Duncan, K.,
Rezvanbehbahani, S., van den Broeke, M. R., Simonsen, S. B., Nagarajan, S., and
Angelen, J. H. V.: Laser altimetry reveals complex pattern of Greenland Ice
Sheet dynamics, P. Natl. Acad. Sci. USA, 111,
18478–18483, https://doi.org/10.1073/pnas.1411680112, 2014. a
ecFlo: ecFlo/greenlandForceBalance: grlInitialSubmission (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.5722398, 2021. a
Enderlin, E. M., Hamilton, G. S., Straneo, F., and Sutherland, D. A.: Iceberg
meltwater fluxes dominate the freshwater budget in
Greenland's iceberg‐congested glacial fjords,
Geophys. Res. Lett., 43, 11287–11294,
https://doi.org/10.1002/2016gl070718, 2016. a, b, c, d
Enderlin, E. M., O'Neel, S., Bartholomaus, T. C., and Joughin, I. R.: Evolving
Environmental and Geometric Controls on Columbia Glacier's Continued
Retreat, J. Geophys. Res.-Earth, 28, 2034–2018,
https://doi.org/10.1029/2017jf004541, 2018. a, b
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J., Kjær,
K. H., Morlighem, M., Noël, B. P. Y., van den Broeke, M. R., Stearns, L. A.,
Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on the
Greenland ice sheet controlled by outlet glacier geometry, Nat.
Geosci., 10, 366–369, https://doi.org/10.1038/ngeo2934, 2017. a, b, c, d, e, f, g, h
Felikson, D., Catania, G., Bartholomaus, T. C., Morlighem, M., and Noël, B.
P. Y.: Steep Glacier Bed Knickpoints Mitigate Inland Thinning in Greenland,
Geophys. Res. Lett., 48, e2020GL090112,
https://doi.org/10.1029/2020gl090112, 2021. a, b
Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., and Abrams, M. J.: ASTER
DEM Performance, IEEE T. Geosci. Remote, 43,
2707–2714, https://doi.org/10.1109/tgrs.2005.847924, 2005. a
Gardner, A., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional Glacier
and Ice Sheet Surface Velocities, National Snow and Ice Data Center [data set], https://doi.org/10.5067/6II6VW8LLWJ7, 2021. a, b, c
Girod, L., Nuth, C., Kääb, A., McNabb, R., and Galland, O.: MMASTER:
Improved ASTER DEMs for Elevation Change Monitoring, Remote Sensing, 9, 704, https://doi.org/10.3390/rs9070704, 2017. a, b
Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration, The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, 2015. a
Goliber, S., Black, T., Catania, G., Lea, J. M., Olsen, H., Cheng, D., Bevan, S., Bjørk, A., Bunce, C., Brough, S., Carr, J. R., Cowton, T., Gardner, A., Fahrner, D., Hill, E., Joughin, I., Korsgaard, N. J., Luckman, A., Moon, T., Murray, T., Sole, A., Wood, M., and Zhang, E.: TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications, The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, 2022. a
Holland, D. M., Thomas, R. H., Young, B. D., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a, b
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Tech. rep., Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/, last access: 1 November 2021. a
Joughin, I. R., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon,
T.: Seasonal speedup along the western flank of the Greenland Ice Sheet,
Science, 320, 781–783, https://doi.org/10.1126/science.1153288, 2008. a
Joughin, I. R., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B.,
Truffer, M., and Fahnestock, M. A.: Seasonal to decadal scale variations in
the surface velocity of Jakobshavn Isbrae, Greenland: Observation and
model-based analysis, J. Geophys. Res., 117, F02030,
https://doi.org/10.1029/2011jf002110, 2012. a, b, c
Joughin, I. R., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction
Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 310, 456–458, https://doi.org/10.1029/2019gl082526,
2019. a, b
Kamb, W. B.: Sliding Motion of Glaciers: Theory and Observation., Rev.
Geophys. Space Phys., 8, 673–728, 1970. a
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M.-J., Jeong, S., Noël, B.
P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss
from the Greenland Ice Sheet driven by sustained glacier retreat, Nature
Communications Earth and Environment, 1, 1,
https://doi.org/10.1038/s43247-020-0001-2, 2020. a, b
Korsgaard, N. J., Nuth, C., Khan, S. A., Kjellerup, K. K., Bjørk, A. A.,
Schomacker, A., and Kjær, K. H.: Digital elevation model and
orthophotographs of Greenland based on aerial photographs from 1978–1987,
Nature Scientific Data, 3, 160032–160015, https://doi.org/10.1038/sdata.2016.32,
2016. a
Lliboutry, L. A.: Local frictions laws for glaciers: a critical review and new
openings, J. Glaciol., 23, 67–95, 1979. a
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory
and Application to Ice Stream B, Antarctica, J. Geophys.
Res., 94, 4071–4078, 1989. a
MacAyeal, D. R.: The basal stress distribution of Ice Stream E, Antarctica,
inferred by control methods, J. Geophys. Res.-Sol. Ea.,
97, 595–603, https://doi.org/10.1029/91jb02454, 1992. a, b
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through March 2020, Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, 2020. a
Meierbachtol, T., Harper, J., and Johnson, J.: Force Balance along Isunnguata
Sermia, West Greenland, Front. Earth Sci., 4, 87,
https://doi.org/10.3389/feart.2016.00087, 2016. a, b, c, d
Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I., and Fahnestock, M. A.: Rapid Reconfiguration of the Greenland Ice Sheet Coastal Margin, J. Geophys. Res.-Earth, 125, e2020JF005585, https://doi.org/10.1029/2020JF005585, 2020. a, b
Morlighem, M., Williams, C. N., Rignot, E. J., An, L., Arndt, J. E., Bamber,
J. L., Catania, G. A., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I. G., Hogan, K. A., Howat, I. M., Hubbard, A. L., Jakobsson, M., Jordan,
T. M., Kjellerup, K. K., Millan, R., Mayer, L. A., Mouginot, J., Noël, B.
P. Y., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert,
M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood,
M. H., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and
Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined
With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017gl074954, 2017. a, b
Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E.: Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge, The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, 2019. a
Motyka, R. J., Truffer, M., Fahnestock, M. A., Mortensen, J., Rysgaard, S., and
Howat, I. M.: Submarine melting of the 1985 Jakobshavn Isbræ floating
tongue and the triggering of the current retreat, J. Geophys.
Res., 116, F01007, https://doi.org/10.1029/2009jf001632, 2011. a
Mouginot, J., Rignot, E. J., Bjørk, A. A., van den Broeke, M. R., Millan, R.,
Morlighem, M., Noël, B. P. Y., Scheuchl, B., and Wood, M. H.: Forty-six
years of Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.7280/d1mm37,
2019. a, b
Murray, T., Scharrer, K., Selmes, N., Booth, A. D., James, T. D., Bevan, S. L.,
Bradley, J. A., Cook, S., Llana, L. C., Drocourt, Y., Dyke, L. M., Goldsack,
A., Hughes, A. L. C., Luckman, A. J., and McGovern, J.: Extensive Retreat of
Greenland Tidewater Glaciers, 2000–2010, Arct. Antarct. Alp.
Res., 47, 427–447, https://doi.org/10.1657/aaar0014-049, 2015. a, b
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018. a
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011. a
Nye, J. F.: Glacier sliding without cavitation in a linear viscous
approximation, P. Roy. Soc. A, 315, 381–403, 1970. a
Price, S. F., Bindschadler, R. A., Hulbe, C. L., and Blankenship, D. D.: Force balance along an inland tributary and onset to Ice Stream D, West Antarctica, J. Glaciol., 48, 20–30, https://doi.org/10.3189/172756502781831539, 2002. a
Schoof, C. G.: The effect of cavitation on glacier sliding, P.
Roy. Soc. A, 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C. G.: Ice sheet grounding line dynamics: Steady states, stability,
and hysteresis, J. Geophys. Res., 112, 1720,
https://doi.org/10.1029/2006jf000664, 2007. a
Seddik, H., Greve, R., Sakakibara, D., Tsutaki, S., Minowa, M., and Sugiyama,
S.: Response of the flow dynamics of Bowdoin Glacier, northwestern
Greenland, to basal lubrication and tidal forcing, J. Glaciol.,
65, 225–238, https://doi.org/10.1017/jog.2018.106, 2018. a
Sergienko, O., Creyts, T. T., and Hindmarsh, R. C. A.: Similarity of organized
patterns in driving and basal stresses of Antarctic and Greenland ice sheets
beneath extensive areas of basal sliding, Geophys. Res. Lett., 41, 3925–3932, https://doi.org/10.1002/2014gl059976, 2014. a
Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M., and Gillet-Chaulet,
F.: Basal resistance for three of the largest Greenland outlet glaciers,
J. Geophys. Res.-Earth, 121, 168–180,
https://doi.org/10.1002/2015jf003643, 2016. a, b, c
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogramm., 116, 101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016. a
Stearns, L. A., Jezek, K. C., and van der Veen, C.: Decadal-scale variations
in ice flow along Whillans Ice Stream and its tributaries, West Antarctica,
J. Glaciol., 51, 147–157, https://doi.org/10.3189/172756505781829610, 2005.
a
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013. a
Taylor, J.: An Introduction to Error Analysis: The Study of Uncertainties in
Physical Measurements, vol. 2, University Science Books, 1996. a
Thomas, R. H.: Force-perturbation analysis of recent thinning and acceleration
of Jakobshavn Isbræ, Greenland, J. Glaciol., 50, 57–66,
https://doi.org/10.3189/172756504781830321, 2004. a
Thomas, R. H. and Bentley, C. R.: A model for Holocene retreat of the West
Antarctic Ice Sheet, Quaternary Res., 10, 150–170,
https://doi.org/10.1016/0033-5894(78)90098-4, 1978. a, b
Thomas, R. H., Abdalati, W., Friderick, E., Krabill, W. B., Manizade, S. S.,
and Steffen, K.: Investigation of surface melting and dynamic thinning on
Jakobshavn Isbrae, Greenland, J. Glaciol., 49, 231–239, 2003. a
van der Veen, C. J. and Whillans, I. M.: Force Budget: I. Theory and Numerical
Methods, J. Glaciol., 35, 68–80,
https://doi.org/10.3189/002214389793701581, 1989. a, b, c, d
Wood, M. H., Rignot, E. J., Fenty, I. G., An, L., Bjørk, A., van den Broeke, M. R., Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M.,
Mouginot, J., Noël, B. P. Y., Scheuchl, B., Velicogna, I., Willis, J. K.,
and Zhang, H.: Ocean forcing drives glacier retreat in Greenland, Sci.
Adv., 7, eaba7282, https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d, e, f, g, h, i, j, k
Short summary
The Greenland Ice Sheet primarily loses mass through increased ice discharge. We find changes in discharge from outlet glaciers are initiated by ocean warming, which causes a change in the balance of forces resisting gravity and leads to acceleration. Vulnerable conditions for sustained retreat and acceleration are predetermined by the glacier-fjord geometry and exist around Greenland, suggesting increases in ice discharge may be sustained into the future despite a pause in ocean warming.
The Greenland Ice Sheet primarily loses mass through increased ice discharge. We find changes in...