Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-3907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal land-ice-flow variability in the Antarctic Peninsula
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Frazer D. W. Christie
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Ian C. Willis
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Jan Wuite
ENVEO IT GmbH, Innsbruck, Austria
Thomas Nagler
ENVEO IT GmbH, Innsbruck, Austria
Related authors
No articles found.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024, https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Short summary
In 2022, multi-year landfast sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the fast ice was joined to the glacier terminus, it could provide resistance against the glacier's flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the fast ice provided significant support to Crane prior to its disintegration.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1108, https://doi.org/10.5194/egusphere-2024-1108, 2024
Short summary
Short summary
Regional climate models are currently the only source for assessing the melt volume on a global scale of the Greenland Ice Sheet. This study compares the modeled melt volume with observations from weather stations and melt extent observed from ASCAT to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542, https://doi.org/10.5194/tc-16-1523-2022, https://doi.org/10.5194/tc-16-1523-2022, 2022
Short summary
Short summary
Open fractures are important to monitor because they weaken the ice shelf structure. We propose a novel approach using synthetic aperture radar (SAR) interferometry for automatic delineation of ice shelf cracks. The method is applied to Sentinel-1 images of Brunt Ice Shelf, Antarctica, and the propagation of the North Rift, which led to iceberg calving in February 2021, is traced. It is also shown that SAR interferometry is more sensitive to rifting than SAR backscatter and optical imagery.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Corinne L. Benedek and Ian C. Willis
The Cryosphere, 15, 1587–1606, https://doi.org/10.5194/tc-15-1587-2021, https://doi.org/10.5194/tc-15-1587-2021, 2021
Short summary
Short summary
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can deliver water through cracks to the ice sheet base and influence the speed of ice flow. Here we look at instances of lakes draining in the middle of winter using the Sentinel-1 radar satellites. Winter-draining lakes can help us understand the mechanisms for lake drainages throughout the year and can point to winter movement of water that will impact our understanding of ice sheet hydrology.
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary
Short summary
A semi-automated method is developed from pre-existing work to track surface water bodies across Antarctic ice shelves over time, using data from Sentinel-2 and Landsat 8. This method is applied to the Nivlisen Ice Shelf for the 2016–2017 melt season. The results reveal two large linear meltwater systems, which hold 63 % of the peak total surface meltwater volume on 26 January 2017. These meltwater systems migrate towards the ice shelf front as the melt season progresses.
Jan De Rydt, Gudmundur Hilmar Gudmundsson, Thomas Nagler, and Jan Wuite
The Cryosphere, 13, 2771–2787, https://doi.org/10.5194/tc-13-2771-2019, https://doi.org/10.5194/tc-13-2771-2019, 2019
Short summary
Short summary
Two large icebergs are about to break off from the Brunt Ice Shelf in Antarctica. Rifting started several years ago and is now approaching its final phase. Satellite data and computer simulations show that over the past 2 decades, growth of the ice shelf has caused a build-up of forces within the ice, which culminated in its fracture. These natural changes in geometry coincided with large variations in flow speed, a process that is thought to be relevant for all Antarctic ice shelf margins.
Wael Abdel Jaber, Helmut Rott, Dana Floricioiu, Jan Wuite, and Nuno Miranda
The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, https://doi.org/10.5194/tc-13-2511-2019, 2019
Short summary
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
Lindsey I. Nicholson, Michael McCarthy, Hamish D. Pritchard, and Ian Willis
The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, https://doi.org/10.5194/tc-12-3719-2018, 2018
Short summary
Short summary
Ground-penetrating radar of supraglacial debris thickness is used to study local thickness variability. Freshly emergent debris cover appears to have higher skewness and kurtosis than more mature debris covers. Accounting for debris thickness variability in ablation models can result in markedly different ice ablation than is calculated using the mean debris thickness. Slope stability modelling reveals likely locations for locally thin debris with high ablation.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Frazer D. W. Christie, Robert G. Bingham, Noel Gourmelen, Eric J. Steig, Rosie R. Bisset, Hamish D. Pritchard, Kate Snow, and Simon F. B. Tett
The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, https://doi.org/10.5194/tc-12-2461-2018, 2018
Short summary
Short summary
With a focus on the hitherto little-studied Marie Byrd Land coastline linking Antarctica's more comprehensively studied Amundsen and Ross Sea Embayments, this paper uses both satellite remote sensing (Landsat, ASTER, ICESat, and CryoSat2) and climate and ocean records (i.e. ERA-Interim, Met Office EN4 data) to examine links between ice recession, inter-decadal atmosphere-ocean forcing and other influences acting upon the Pacific-facing coastline of West Antarctica.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Jan De Rydt, G. Hilmar Gudmundsson, Thomas Nagler, Jan Wuite, and Edward C. King
The Cryosphere, 12, 505–520, https://doi.org/10.5194/tc-12-505-2018, https://doi.org/10.5194/tc-12-505-2018, 2018
Short summary
Short summary
We provide an unprecedented view into the dynamics of two active rifts in the Brunt Ice Shelf through a unique set of field observations, novel satellite data products, and a state-of-the-art ice flow model. We describe the evolution of fracture width and length in great detail, pushing the boundaries of both spatial and temporal coverage, and provide a deeper insight into the process of iceberg formation, which exerts an important control over the mass balance of the Antarctic Ice Sheet.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern
The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, https://doi.org/10.5194/tc-9-957-2015, 2015
Short summary
Short summary
We present new analysis of satellite data showing the variability of glacier velocities in the Larsen B area, Antarctic Peninsula, back to 1995. Velocity data and estimates of ice thickness are used to derive ice discharge at different epochs. Velocities of the glaciers remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs, and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance.
N. S. Arnold, A. F. Banwell, and I. C. Willis
The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, https://doi.org/10.5194/tc-8-1149-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Remote Sensing
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
Mapping the extent of giant Antarctic icebergs with deep learning
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote sensing data
Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland
Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry
An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery
Penetration of interferometric radar signals in Antarctic snow
Brief communication: Ice sheet elevation measurements from the Sentinel-3A and Sentinel-3B tandem phase
Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Quantifying spatiotemporal variability of glacier algal blooms and the impact on surface albedo in southwestern Greenland
Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica
Measuring the location and width of the Antarctic grounding zone using CryoSat-2
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Melt in Antarctica derived from Soil Moisture and Ocean Salinity (SMOS) observations at L band
Sentinel-3 Delay-Doppler altimetry over Antarctica
The Reference Elevation Model of Antarctica
Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2
Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland
Coherent large beamwidth processing of radio-echo sounding data
Multi-channel and multi-polarization radar measurements around the NEEM site
Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet
Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024, https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lake segments up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enable the development of data-driven models of meltwater volumes in satellite imagery.
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024, https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Short summary
The grounding line, where ice begins to float, is an essential variable to understand ice dynamics, but in some locations it can be challenging to measure with established techniques. Using satellite data and a new method, Wallis et al. measure the grounding line position of glaciers and ice shelves in the Antarctic Peninsula and find retreats of up to 16.3 km have occurred since the last time measurements were made in the 1990s.
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024, https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
The Cryosphere, 18, 2531–2555, https://doi.org/10.5194/tc-18-2531-2024, https://doi.org/10.5194/tc-18-2531-2024, 2024
Short summary
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and change in extent over time. We present a new method for detecting ice slabs in satellite radar data, which we use to map ice slabs at 500 m resolution across the entire ice sheet in winter 2016–2017. Our results provide better spatial coverage and resolution than previous maps from airborne radar and lay the groundwork for long-term monitoring of ice slabs from space.
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023, https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2023-1556, https://doi.org/10.5194/egusphere-2023-1556, 2023
Short summary
Short summary
This study used a machine learning approach to estimate the densities over the Antarctic Ice Sheet, particularly in the areas where the snow is usually dry. The motivation is to establish a link between satellite parameters to snow densities, as measurements are difficult for people to take on site. It provides valuable insights into the complexities of the relationship between satellite parameters and firn density and provides potential for further studies.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023, https://doi.org/10.5194/tc-17-1003-2023, 2023
Short summary
Short summary
The Totten and Moscow University glaciers in East Antarctica have the potential to make a significant contribution to future sea-level rise. We used a combination of different satellite measurements to show that the grounding lines have been retreating along the fast-flowing ice streams across these two glaciers. We also found two tide-modulated ocean channels that might open new pathways for the warm ocean water to enter the ice shelf cavity.
Thomas R. Chudley, Ian M. Howat, Bidhyananda Yadav, and Myoung-Jong Noh
The Cryosphere, 16, 2629–2642, https://doi.org/10.5194/tc-16-2629-2022, https://doi.org/10.5194/tc-16-2629-2022, 2022
Short summary
Short summary
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it difficult to extract reliable glacier velocity fields from images from different orbits. Here, we use a complete record of velocity fields at four Greenlandic outlet glaciers to empirically estimate the systematic error, allowing us to correct cross-track glacier velocity fields to a comparable accuracy to other medium-resolution satellite datasets.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Rajashree Tri Datta and Bert Wouters
The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021, https://doi.org/10.5194/tc-15-5115-2021, 2021
Short summary
Short summary
The ICESat-2 laser altimeter can detect the surface and bottom of a supraglacial lake. We introduce the Watta algorithm, automatically calculating lake surface, corrected bottom, and (sub-)surface ice at high resolution adapting to signal strength. ICESat-2 depths constrain full lake depths of 46 lakes over Jakobshavn glacier using multiple sources of imagery, including very high-resolution Planet imagery, used for the first time to extract supraglacial lake depths empirically using ICESat-2.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Shujie Wang, Marco Tedesco, Patrick Alexander, Min Xu, and Xavier Fettweis
The Cryosphere, 14, 2687–2713, https://doi.org/10.5194/tc-14-2687-2020, https://doi.org/10.5194/tc-14-2687-2020, 2020
Short summary
Short summary
Glacial algal blooms play a significant role in darkening the Greenland Ice Sheet during summertime. The dark pigments generated by glacial algae could substantially reduce the bare ice albedo and thereby enhance surface melt. We used satellite data to map the spatial distribution of glacial algae and characterized the seasonal growth pattern and interannual trends of glacial algae in southwestern Greenland. Our study is important for bridging microbial activities with ice sheet mass balance.
Laura E. Lindzey, Lucas H. Beem, Duncan A. Young, Enrica Quartini, Donald D. Blankenship, Choon-Ki Lee, Won Sang Lee, Jong Ik Lee, and Joohan Lee
The Cryosphere, 14, 2217–2233, https://doi.org/10.5194/tc-14-2217-2020, https://doi.org/10.5194/tc-14-2217-2020, 2020
Short summary
Short summary
An extensive aerogeophysical survey including two active subglacial lakes was conducted over David Glacier, Antarctica. Laser altimetry shows that the lakes were at a highstand, while ice-penetrating radar has no unique signature for the lakes when compared to the broader basal environment. This suggests that active subglacial lakes are more likely to be part of a distributed subglacial hydrological system than to be discrete reservoirs, which has implications for future surveys and drilling.
Geoffrey J. Dawson and Jonathan L. Bamber
The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, https://doi.org/10.5194/tc-14-2071-2020, 2020
Short summary
Short summary
The grounding zone is where grounded ice begins to float and is the boundary at which the ocean has the most significant influence on the inland ice sheet. Here, we present the results of mapping the grounding zone of Antarctic ice shelves from CryoSat-2 radar altimetry. We found good agreement with previous methods that mapped the grounding zone. We also managed to map areas of Support Force Glacier and the Doake Ice Rumples (Filchner–Ronne Ice Shelf), which were previously incompletely mapped.
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020, https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Short summary
Reflected GPS signals can be used to measure snow accumulation. The GPS method is accurate and has a footprint that is larger than that of many other methods. This short note makes available 9 years of daily snow accumulation measurements from Greenland that were derived from reflected GPS signals. It also provides information about open-source software that the cryosphere community can use to analyze other datasets.
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020, https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Short summary
This study uses reflected GPS signals to measure ice at the South Pole itself for the first time. These measurements are essential to understand the interaction of the ice with the Earth’s physical systems. Orbital constraints mean that satellites are usually unable to measure in the vicinity of the South Pole itself. This is overcome here by using data obtained by UK TechDemoSat-1. Data are processed to obtain the height of glacial ice across the Greenland and Antarctic ice sheets.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Malcolm McMillan, Alan Muir, Andrew Shepherd, Roger Escolà, Mònica Roca, Jérémie Aublanc, Pierre Thibaut, Marco Restano, Américo Ambrozio, and Jérôme Benveniste
The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, https://doi.org/10.5194/tc-13-709-2019, 2019
Short summary
Short summary
Melting of the Greenland and Antarctic ice sheets is one of the main causes of current sea level rise. Understanding ice sheet change requires large-scale systematic satellite monitoring programmes. This study provides the first assessment of a new long-term source of measurements, from Sentinel-3 satellite altimetry. We estimate the accuracy of Sentinel-3 across Antarctica, show that the satellite can detect regions that are rapidly losing ice, and identify signs of subglacial lake activity.
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Short summary
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale terrain map at less than 10 m resolution, and the first with a time stamp, enabling measurements of elevation change. REMA is constructed from over 300 000 individual stereoscopic elevation models (DEMs) extracted from submeter-resolution satellite imagery. REMA is vertically registered to satellite altimetry, resulting in errors of less than 1 m over most of its area and relative uncertainties of decimeters.
Kelly M. Brunt, Thomas A. Neumann, and Christopher F. Larsen
The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019, https://doi.org/10.5194/tc-13-579-2019, 2019
Short summary
Short summary
This paper provides an assessment of new GPS elevation data collected near the South Pole, Antarctica, that will ultimately be used for ICESat-2 satellite elevation data validation. Further, using the new ground-based GPS data, this paper provides an assessment of airborne lidar elevation data collected between 2014 and 2017, which will also be used for ICESat-2 data validation.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Anton Heister and Rolf Scheiber
The Cryosphere, 12, 2969–2979, https://doi.org/10.5194/tc-12-2969-2018, https://doi.org/10.5194/tc-12-2969-2018, 2018
Short summary
Short summary
We provide a method based on Fourier analysis of coherent radio-echo sounding data for analyzing angular back-scattering characteristics of the ice sheet and bed. The characteristics can be used for the bed roughness estimation and detection of subglacial water. The method also offers improved estimation of the internal layers' tilt. The research is motivated by a need for a tool for training dictionaries for model-based tomographic focusing of multichannel coherent radio-echo sounders.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S.,
and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula Ice
Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652,
2018.
Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of
warm water on Antarctic ice shelf stability through basal channel formation,
Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B
Ice Shelf triggered by chain reaction drainage of supraglacial
lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface
hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044–1052,
https://doi.org/10.1038/s41558-018-0326-3, 2018.
Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., and Nagler, T.: West
Antarctic Peninsula grounding line location datasets supporting “Seasonal
land-ice-flow variability in the Antarctic Peninsula”, Cambridge Apollo [data set]
https://doi.org/10.17863/CAM.82248, 2022a.
Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., and Nagler, T.: West
Antarctic Peninsula seasonal ice velocity products supporting “Seasonal land-ice-flow variability in the Antarctic Peninsula”, Cambridge Apollo [data set]
https://doi.org/10.17863/CAM.82252, 2022b.
Bracewell, R.: The Fourier transform and its applications,
McGraw-Hill, Inc., New York, 1978.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., and Muto, A.:
Four-decade record of pervasive grounding line retreat along the
Bellingshausen margin of West Antarctica, Geophys. Res. Lett., 43, 5741–5749,
https://doi.org/10.1002/2016GL068972, 2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Steig, E. J., Bisset, R. R., Pritchard, H. D., Snow, K., and Tett, S. F. B.: Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability, The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, 2018.
Christie, F. D. W., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., and
Dowdeswell, J. A.: Antarctic ice-shelf advance driven by anomalous atmospheric
and sea-ice circulation, Nat. Geosci., 15, 356–362,
https://doi.org/10.1038/s41561-022-00938-x, 2022.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Dell, R. L., Banwell, A. F., Willis, I. C., Arnold, N. S., Halberstadt, A. R. W., Chudley, T. R., and Pritchard, H. D.: Supervised classification of slush and ponded water on Antarctic ice shelves using Landsat 8 imagery, J. Glaciol., 68, 401–414, https://doi.org/10.1017/jog.2021.114, 2022.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: A novel method for
automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR
imagery and deep learning, Remote Sensing, 13, 197,
https://doi.org/10.3390/rs13020197, 2021.
Dutrieux, P., Rydt, J. D., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H.,
Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong Sensitivity
of Pine Island Ice-Shelf Melting to Climatic Variability, Science, 343, 174–178,
https://doi.org/10.1126/science.1244341, 2014.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi,
H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M.,
Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne,
A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B.,
Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers,
C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C.,
Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R.,
Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss,
M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le
Clec'h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J.-H.,
Martin, D. F., Maussion, F., Morlighem, M., O'Neill, J. F., Nias, I., Pattyn,
F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce,
D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon, S.,
Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam,
J., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao,
C., Zhang, T., and Zwinger, T.: Projected land ice contributions to
twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021.
ESA: User Guides – Sentinel-1 SAR – Sentinel Online – Sentinel Online,
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar,
last access: January 2022.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and Brunt,
K. M.: Mapping the grounding zone of the Amery Ice Shelf, East Antarctica
using InSAR, MODIS and ICESat, Antarct. Sci., 21, 515–532,
https://doi.org/10.1017/S095410200999023X, 2009.
Friedl, P., Weiser, F., Fluhrer, A., and Braun, M. H.: Remote sensing of glacier
and ice sheet grounding lines: A review, Earth-Sci. Rev., 201, 102948,
https://doi.org/10.1016/j.earscirev.2019.102948, 2020.
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice
Sheet Surface Velocities: Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/IMR9D3PEI28U,
2019.
Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G.,
Kimura, S., Hogg, A. E., Shepherd, A., Mouginot, J., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., and van de Berg, W. J.: Channelized Melting Drives Thinning
Under a Rapidly Melting Antarctic Ice Shelf, Geophys. Res. Lett., 44, 9796–9804,
https://doi.org/10.1002/2017GL074929, 2017.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243,
https://doi.org/10.1038/nature11566, 2012.
Hogg, A. E., Shepherd, A., Cornford, S. L., Briggs, K. H., Gourmelen, N.,
Graham, J. A., Joughin, I., Mouginot, J., Nagler, T., Payne, A. J., Rignot,
E., and Wuite, J.: Increased ice flow in Western Palmer Land linked to ocean
melting, Geophys. Res. Lett., 44, 4159–4167, https://doi.org/10.1002/2016GL072110, 2017.
Holland, P. R., Jenkins A., and Holland D. M.: Ice and ocean processes in the
Bellingshausen Sea, Antarctica, J. Geophys. Res., 115, C05020,
https://doi.org/10.1029/2008JC005219, 2010,
Holt, T. and Glasser, N. F.: Changes in area, flow speed and structure of
southwest Antarctic Peninsula ice shelves in the 21st century, J. Glaciol., 1–19,
https://doi.org/10.1017/jog.2022.7, 2022.
Holt, T. O., Glasser, N. F., Quincey, D. J., and Siegfried, M. R.: Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, 2013.
Hooke, R. L., Calla, P., Holmlund, P., Nilsson, M., and Stroeven, A.: A 3 year
record of seasonal variations in surface velocity, Storglaciären,
Sweden, J. Glaciol., 35, 235–247, https://doi.org/10.3189/S0022143000004561,
1989.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Iken, A.: The effect of the subglacial water pressure on the sliding velocity
of a glacier in an idealized numerical model, J. Glaciol., 27, 407–421,
https://doi.org/10.3189/S0022143000011448, 1981.
Iken, A., Röthlisberger, H., Flotron, A., and Haeberli, W.: The uplift of
Unteraargletscher at the beginning of the melt season – a consequence of
water storage at the bed?, J. Glaciol., 29, 28–47, https://doi.org/10.3189/S0022143000005128, 1983.
Jenkins, A. and Jacobs, S.: Circulation and melting beneath George VI Ice
Shelf, Antarctica, J. Geophys. Res., 113, C04013, https://doi.org/10.1029/2007JC004449, 2008.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb,
A. T., and White, D.: Observations beneath Pine Island Glacier in West Antarctica
and implications for its retreat, Nat. Geosci., 3, 468–472,
https://doi.org/10.1038/ngeo890, 2010.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H.,
Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11, 733–738,
https://doi.org/10.1038/s41561-018-0207-4, 2018.
Johnson, A., Hock, R., and Fahnestock, M.: Spatial variability and regional
trends of Antarctic ice shelf surface melt duration over 1979–2020 derived
from passive microwave data, J. Glaciol., 68, 533–546,
https://doi.org/10.1017/jog.2021.112, 2022.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012a.
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B.,
Truffer, M., and Fahnestock, M. Seasonal to decadal scale variations in the
surface velocity of Jakobshavn Isbrae, Greenland: Observation and
model-based analysis, J. Geophys. Res., 117, F02030, https://doi.org/10.1029/2011JF002110, 2012b.
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018.
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of
meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352,
https://doi.org/10.1038/nature22049, 2017.
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.: Initial in situ
measurements of perennial meltwater storage in the Greenland firn aquifer,
Geophys. Res. Lett., 41, 81–85, https://doi.org/10.1002/2013GL058083, 2014.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat. Geosci., 11, 258–262,
https://doi.org/10.1038/s41561-018-0082-z, 2018.
Kraaijenbrink, P., Meijer, S. W., Shea, J. M., Pellicciotti, F., De Jong, S. M.,
and Immerzeel, W. W.: Seasonal surface velocities of a Himalayan glacier
derived by automated correlation of unmanned aerial vehicle imagery, Ann. Glaciol.,
57, 103–113, https://doi.org/10.3189/2016AoG71A072, 2016.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and Van Wessem, J. M.:
Evolution of supraglacial lakes on the Larsen B ice shelf in the decades
before it collapsed, Geophys. Res. Lett., 47, e2019GL085591,
https://doi.org/10.1029/2019GL085591, 2020.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and Milillo,
P.: Automatic delineation of glacier grounding lines in differential
interferometric synthetic-aperture radar data using deep learning, Sci. Rep.-UK 11, 4992,
https://doi.org/10.1038/s41598-021-84309-3, 2021a.
Mohajerani, Y., Jeong, S.,
Scheuchl, B.,
Velicogna, I.,
Rignot, E., and
Milillo, P.: Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning, Dryad [data set], https://doi.org/10.7280/D1VD6G, 2021b.
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216, https://doi.org/10.1002/2014GL061836, 2014.
Montgomery, L., Miège, C., Miller, J., Scambos, T.A., Wallin, B., Miller, O., Solomon, D. K., Forster, R., and Koenig, L.: Hydrologic properties of a highly permeable firn aquifer in the Wilkins Ice Shelf, Antarctica, Geophys. Res. Lett., 47, e2020GL089552, https://doi.org/10.1029/2020GL089552, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan,
R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel,
A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R.,
van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of Ice Motion in Antarctica
Using Synthetic-Aperture Radar Data, Remote Sens., 4, 2753–2767,
https://doi.org/10.3390/rs4092753, 2012.
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSURES Antarctic Boundaries for IPY 2007–2009 from Satellite
Radar, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/AXE4121732AD, 2017.
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The Sentinel-1
Mission: New Opportunities for Ice Sheet Observations, Remote Sens., 7, 9371–9389,
https://doi.org/10.3390/rs70709371, 2015.
Nagler, T., Wuite, J., Libert, L., Hetzenecker, M., Keuris, L., and Rott, H.:
Continuous Monitoring of Ice Motion and Discharge of Antarctic and Greenland
Ice Sheets and Outlet Glaciers by Sentinel-1 A amp; B, in: 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, presented at
the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
1061–1064, https://doi.org/10.1109/IGARSS47720.2021.9553514, 2021.
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice Shelf
Melting Based on CMIP5 Scenarios, J. Climate, 31, 5243–5261,
https://doi.org/10.1175/JCLI-D-17-0854.1, 2018.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S.,
and Siegfried, M. R.: Response of Pacific-sector Antarctic ice shelves to the El
Niño/Southern Oscillation, Nat. Geosci., 11, 121–126,
https://doi.org/10.1038/s41561-017-0033-0, 2018.
Park, J. W., Gourmelen, N., Shepherd, A., Kim, S. W., Vaughan, D. G., and Wingham,
D. J.: Sustained retreat of the Pine Island Glacier, Geophys. Res. Lett., 40, 2137–2142,
https://doi.org/10.1002/grl.50379, 2013.
Petty, A. A., Holland, P. R., and Feltham, D. L.: Sea ice and the ocean mixed layer over the Antarctic shelf seas, The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, 2014.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive
dynamic thinning on the margins of the Greenland and Antarctic ice sheets,
Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van Den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting of
ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B ice
shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510,
https://doi.org/10.3189/172756404781814005, 2004.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs Antarctic Grounding Line from Differential Satellite
Radar Interferometry, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. U., and Thomas,
R.: Accelerated ice discharge from the Antarctic Peninsula following the
collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, 18,
https://doi.org/10.1029/2004GL020697, 2004.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic Ice Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011a.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping from
differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504,
https://doi.org/10.1029/2011GL047109, 2011b.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting Around
Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509,
https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2, Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1594/PANGAEA.896940, 2019.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez,
E., and Goldstein, R. M.: Synthetic aperture radar interferometry, Proc. IEEE, 88, 333–382,
https://doi.org/10.1109/5.838084, 2000.
Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern Larsen ice
shelf, Antarctica, Science, 271, 788–792,
https://doi.org/10.1126/science.271.5250.788, 1996.
Rott, H., Wuite, J., De Rydt, J., Gudmundsson, G. H., Floricioiu, D., and
Rack, W.: Impact of marine processes on flow dynamics of northern Antarctic
Peninsula outlet glaciers, Nat. Commun., 11, 1–3,
https://doi.org/10.1038/s41467-020-16658-y, 2020.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043, 2000.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B
embayment, Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004.
Scambos, T., Fricker, H. A., Liu, C. C., Bohlander, J., Fastook, J., Sargent,
A., Massom, R., and Wu, A. M.: Ice shelf disintegration by plate bending and
hydro-fracture: Satellite observations and model results of the 2008 Wilkins
ice shelf break-ups, Earth Planet. Sc. Lett., 280, 51–60,
https://doi.org/10.1016/j.epsl.2008.12.027, 2009.
Schannwell, C., Cornford, S., Pollard, D., and Barrand, N. E.: Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves, The Cryosphere, 12, 2307–2326, https://doi.org/10.5194/tc-12-2307-2018, 2018.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Selley, H. L., Hogg, A. E., Cornford, S., Dutrieux, P., Shepherd, A., Wuite,
J., Floricioiu, D., Kusk, A., Nagler, T., Gilbert, L., and Slater, T.:
Widespread increase in dynamic imbalance in the Getz region of Antarctica
from 1994 to 2018, Nat. Commun., 12, 1–10, https://doi.org/10.1038/s41467-021-21321-1,
2021.
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.
Steig, E. J., Ding, Q., Battisti, D. S., and Jenkins, A.: Tropical forcing of
Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen
Sea Embayment, West Antarctica, Ann. Glaciol., 53, 19–28,
https://doi.org/10.3189/2012AoG60A110, 2012.
The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Thoma, M., Jenkins, A., Holland, D., and Jacobs, S.: Modelling Circumpolar Deep
Water intrusions on the Amundsen Sea continental shelf, Antarctica, Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and van den Broeke, M. R.:
Satellite-based estimates of Antarctic surface meltwater fluxes, Geophys. Res. Lett., 40,
6148–6153, https://doi.org/10.1002/2013GL058138, 2013.
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S.,
Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of 21st
century warming on Antarctic Peninsula consistent with natural variability,
Nature, 535, 411–415, https://doi.org/10.1038/nature18645, 2016.
van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R.: An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, 2021.
Vaughan, D. G., Smith, A. M., Nath, P. C., and Meur, E. L.: Acoustic impedance and
basal shear stress beneath four Antarctic ice streams, Ann. Glaciol., 36, 225–232,
https://doi.org/10.3189/172756403781816437, 2003.
Vieli, A. and Nick, F. M.: Understanding and Modelling Rapid Dynamic Changes of
Tidewater Outlet Glaciers: Issues and Implications, Surv. Geophys., 32, 437–458,
https://doi.org/10.1007/s10712-011-9132-4, 2011.
Webber, B. G., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P.,
Jenkins, A., Jacobs, S. S., Ha, H. K., Lee, S. H., and Kim, T. W.: Mechanisms
driving variability in the ocean forcing of Pine Island Glacier, Nat. Commun., 8,
1–8, https://doi.org/10.1038/ncomms14507, 2017.
Winter, K., Hill, E. A., Gudmundsson, G. H., and Woodward, J.: Subglacial topography and ice flux along the English Coast of Palmer Land, Antarctic Peninsula, Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, 2020.
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M.: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013, The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, 2015.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002.
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first...