Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-3907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal land-ice-flow variability in the Antarctic Peninsula
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Frazer D. W. Christie
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Ian C. Willis
Scott Polar Research Institute, University of Cambridge, Cambridge,
UK
Jan Wuite
ENVEO IT GmbH, Innsbruck, Austria
Thomas Nagler
ENVEO IT GmbH, Innsbruck, Austria
Related authors
No articles found.
Connor Wolfgang Dean, Randall Scharien, Ian Willis, and Kali Anne McDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-4588, https://doi.org/10.5194/egusphere-2025-4588, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study we track winter supraglacial lake drainage on the Greenland Ice Sheet. Winter drainage is hard to observe, so we used synthetic aperture radar images to build a method that detects events across ten winter seasons. We find drainage occurs every winter, often in cascades, is most common at lower elevations, and indicates clear links to summer drainage and melt conditions. Winter drainage seldom drives seasonal changes in ice speed, though brief increases can follow cascade events.
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
The Cryosphere, 19, 2963–2981, https://doi.org/10.5194/tc-19-2963-2025, https://doi.org/10.5194/tc-19-2963-2025, 2025
Short summary
Short summary
Regional climate models are currently the only source for assessing the melt volume of the Greenland Ice Sheet on a global scale. This study compares the modeled melt volume with observations from weather stations and melt extent observed from the Advanced SCATterometer (ASCAT) to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025, https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Short summary
We developed a robust freeze–thaw detection approach, applying a constant threshold to Copernicus Sentinel-1 data that is suitable for tundra regions. All global, coarser-resolution products, tested with the resulting benchmarking dataset, are of value for freeze–thaw retrieval, although differences were found depending on the seasons, particularly during the spring and autumn transition.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024, https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Short summary
In 2022, multi-year landfast sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the fast ice was joined to the glacier terminus, it could provide resistance against the glacier's flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the fast ice provided significant support to Crane prior to its disintegration.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542, https://doi.org/10.5194/tc-16-1523-2022, https://doi.org/10.5194/tc-16-1523-2022, 2022
Short summary
Short summary
Open fractures are important to monitor because they weaken the ice shelf structure. We propose a novel approach using synthetic aperture radar (SAR) interferometry for automatic delineation of ice shelf cracks. The method is applied to Sentinel-1 images of Brunt Ice Shelf, Antarctica, and the propagation of the North Rift, which led to iceberg calving in February 2021, is traced. It is also shown that SAR interferometry is more sensitive to rifting than SAR backscatter and optical imagery.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Corinne L. Benedek and Ian C. Willis
The Cryosphere, 15, 1587–1606, https://doi.org/10.5194/tc-15-1587-2021, https://doi.org/10.5194/tc-15-1587-2021, 2021
Short summary
Short summary
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can deliver water through cracks to the ice sheet base and influence the speed of ice flow. Here we look at instances of lakes draining in the middle of winter using the Sentinel-1 radar satellites. Winter-draining lakes can help us understand the mechanisms for lake drainages throughout the year and can point to winter movement of water that will impact our understanding of ice sheet hydrology.
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S.,
and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula Ice
Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652,
2018.
Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of
warm water on Antarctic ice shelf stability through basal channel formation,
Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B
Ice Shelf triggered by chain reaction drainage of supraglacial
lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface
hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044–1052,
https://doi.org/10.1038/s41558-018-0326-3, 2018.
Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., and Nagler, T.: West
Antarctic Peninsula grounding line location datasets supporting “Seasonal
land-ice-flow variability in the Antarctic Peninsula”, Cambridge Apollo [data set]
https://doi.org/10.17863/CAM.82248, 2022a.
Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., and Nagler, T.: West
Antarctic Peninsula seasonal ice velocity products supporting “Seasonal land-ice-flow variability in the Antarctic Peninsula”, Cambridge Apollo [data set]
https://doi.org/10.17863/CAM.82252, 2022b.
Bracewell, R.: The Fourier transform and its applications,
McGraw-Hill, Inc., New York, 1978.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., and Muto, A.:
Four-decade record of pervasive grounding line retreat along the
Bellingshausen margin of West Antarctica, Geophys. Res. Lett., 43, 5741–5749,
https://doi.org/10.1002/2016GL068972, 2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Steig, E. J., Bisset, R. R., Pritchard, H. D., Snow, K., and Tett, S. F. B.: Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability, The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, 2018.
Christie, F. D. W., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., and
Dowdeswell, J. A.: Antarctic ice-shelf advance driven by anomalous atmospheric
and sea-ice circulation, Nat. Geosci., 15, 356–362,
https://doi.org/10.1038/s41561-022-00938-x, 2022.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Dell, R. L., Banwell, A. F., Willis, I. C., Arnold, N. S., Halberstadt, A. R. W., Chudley, T. R., and Pritchard, H. D.: Supervised classification of slush and ponded water on Antarctic ice shelves using Landsat 8 imagery, J. Glaciol., 68, 401–414, https://doi.org/10.1017/jog.2021.114, 2022.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: A novel method for
automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR
imagery and deep learning, Remote Sensing, 13, 197,
https://doi.org/10.3390/rs13020197, 2021.
Dutrieux, P., Rydt, J. D., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H.,
Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong Sensitivity
of Pine Island Ice-Shelf Melting to Climatic Variability, Science, 343, 174–178,
https://doi.org/10.1126/science.1244341, 2014.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi,
H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M.,
Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne,
A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B.,
Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers,
C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C.,
Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R.,
Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss,
M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le
Clec'h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J.-H.,
Martin, D. F., Maussion, F., Morlighem, M., O'Neill, J. F., Nias, I., Pattyn,
F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce,
D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon, S.,
Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam,
J., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao,
C., Zhang, T., and Zwinger, T.: Projected land ice contributions to
twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021.
ESA: User Guides – Sentinel-1 SAR – Sentinel Online – Sentinel Online,
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar,
last access: January 2022.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and Brunt,
K. M.: Mapping the grounding zone of the Amery Ice Shelf, East Antarctica
using InSAR, MODIS and ICESat, Antarct. Sci., 21, 515–532,
https://doi.org/10.1017/S095410200999023X, 2009.
Friedl, P., Weiser, F., Fluhrer, A., and Braun, M. H.: Remote sensing of glacier
and ice sheet grounding lines: A review, Earth-Sci. Rev., 201, 102948,
https://doi.org/10.1016/j.earscirev.2019.102948, 2020.
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice
Sheet Surface Velocities: Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/IMR9D3PEI28U,
2019.
Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G.,
Kimura, S., Hogg, A. E., Shepherd, A., Mouginot, J., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., and van de Berg, W. J.: Channelized Melting Drives Thinning
Under a Rapidly Melting Antarctic Ice Shelf, Geophys. Res. Lett., 44, 9796–9804,
https://doi.org/10.1002/2017GL074929, 2017.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243,
https://doi.org/10.1038/nature11566, 2012.
Hogg, A. E., Shepherd, A., Cornford, S. L., Briggs, K. H., Gourmelen, N.,
Graham, J. A., Joughin, I., Mouginot, J., Nagler, T., Payne, A. J., Rignot,
E., and Wuite, J.: Increased ice flow in Western Palmer Land linked to ocean
melting, Geophys. Res. Lett., 44, 4159–4167, https://doi.org/10.1002/2016GL072110, 2017.
Holland, P. R., Jenkins A., and Holland D. M.: Ice and ocean processes in the
Bellingshausen Sea, Antarctica, J. Geophys. Res., 115, C05020,
https://doi.org/10.1029/2008JC005219, 2010,
Holt, T. and Glasser, N. F.: Changes in area, flow speed and structure of
southwest Antarctic Peninsula ice shelves in the 21st century, J. Glaciol., 1–19,
https://doi.org/10.1017/jog.2022.7, 2022.
Holt, T. O., Glasser, N. F., Quincey, D. J., and Siegfried, M. R.: Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, 2013.
Hooke, R. L., Calla, P., Holmlund, P., Nilsson, M., and Stroeven, A.: A 3 year
record of seasonal variations in surface velocity, Storglaciären,
Sweden, J. Glaciol., 35, 235–247, https://doi.org/10.3189/S0022143000004561,
1989.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Iken, A.: The effect of the subglacial water pressure on the sliding velocity
of a glacier in an idealized numerical model, J. Glaciol., 27, 407–421,
https://doi.org/10.3189/S0022143000011448, 1981.
Iken, A., Röthlisberger, H., Flotron, A., and Haeberli, W.: The uplift of
Unteraargletscher at the beginning of the melt season – a consequence of
water storage at the bed?, J. Glaciol., 29, 28–47, https://doi.org/10.3189/S0022143000005128, 1983.
Jenkins, A. and Jacobs, S.: Circulation and melting beneath George VI Ice
Shelf, Antarctica, J. Geophys. Res., 113, C04013, https://doi.org/10.1029/2007JC004449, 2008.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb,
A. T., and White, D.: Observations beneath Pine Island Glacier in West Antarctica
and implications for its retreat, Nat. Geosci., 3, 468–472,
https://doi.org/10.1038/ngeo890, 2010.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H.,
Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11, 733–738,
https://doi.org/10.1038/s41561-018-0207-4, 2018.
Johnson, A., Hock, R., and Fahnestock, M.: Spatial variability and regional
trends of Antarctic ice shelf surface melt duration over 1979–2020 derived
from passive microwave data, J. Glaciol., 68, 533–546,
https://doi.org/10.1017/jog.2021.112, 2022.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012a.
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B.,
Truffer, M., and Fahnestock, M. Seasonal to decadal scale variations in the
surface velocity of Jakobshavn Isbrae, Greenland: Observation and
model-based analysis, J. Geophys. Res., 117, F02030, https://doi.org/10.1029/2011JF002110, 2012b.
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018.
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of
meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352,
https://doi.org/10.1038/nature22049, 2017.
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.: Initial in situ
measurements of perennial meltwater storage in the Greenland firn aquifer,
Geophys. Res. Lett., 41, 81–85, https://doi.org/10.1002/2013GL058083, 2014.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat. Geosci., 11, 258–262,
https://doi.org/10.1038/s41561-018-0082-z, 2018.
Kraaijenbrink, P., Meijer, S. W., Shea, J. M., Pellicciotti, F., De Jong, S. M.,
and Immerzeel, W. W.: Seasonal surface velocities of a Himalayan glacier
derived by automated correlation of unmanned aerial vehicle imagery, Ann. Glaciol.,
57, 103–113, https://doi.org/10.3189/2016AoG71A072, 2016.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and Van Wessem, J. M.:
Evolution of supraglacial lakes on the Larsen B ice shelf in the decades
before it collapsed, Geophys. Res. Lett., 47, e2019GL085591,
https://doi.org/10.1029/2019GL085591, 2020.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and Milillo,
P.: Automatic delineation of glacier grounding lines in differential
interferometric synthetic-aperture radar data using deep learning, Sci. Rep.-UK 11, 4992,
https://doi.org/10.1038/s41598-021-84309-3, 2021a.
Mohajerani, Y., Jeong, S.,
Scheuchl, B.,
Velicogna, I.,
Rignot, E., and
Milillo, P.: Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning, Dryad [data set], https://doi.org/10.7280/D1VD6G, 2021b.
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216, https://doi.org/10.1002/2014GL061836, 2014.
Montgomery, L., Miège, C., Miller, J., Scambos, T.A., Wallin, B., Miller, O., Solomon, D. K., Forster, R., and Koenig, L.: Hydrologic properties of a highly permeable firn aquifer in the Wilkins Ice Shelf, Antarctica, Geophys. Res. Lett., 47, e2020GL089552, https://doi.org/10.1029/2020GL089552, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan,
R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel,
A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R.,
van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of Ice Motion in Antarctica
Using Synthetic-Aperture Radar Data, Remote Sens., 4, 2753–2767,
https://doi.org/10.3390/rs4092753, 2012.
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSURES Antarctic Boundaries for IPY 2007–2009 from Satellite
Radar, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/AXE4121732AD, 2017.
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The Sentinel-1
Mission: New Opportunities for Ice Sheet Observations, Remote Sens., 7, 9371–9389,
https://doi.org/10.3390/rs70709371, 2015.
Nagler, T., Wuite, J., Libert, L., Hetzenecker, M., Keuris, L., and Rott, H.:
Continuous Monitoring of Ice Motion and Discharge of Antarctic and Greenland
Ice Sheets and Outlet Glaciers by Sentinel-1 A amp; B, in: 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, presented at
the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
1061–1064, https://doi.org/10.1109/IGARSS47720.2021.9553514, 2021.
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice Shelf
Melting Based on CMIP5 Scenarios, J. Climate, 31, 5243–5261,
https://doi.org/10.1175/JCLI-D-17-0854.1, 2018.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S.,
and Siegfried, M. R.: Response of Pacific-sector Antarctic ice shelves to the El
Niño/Southern Oscillation, Nat. Geosci., 11, 121–126,
https://doi.org/10.1038/s41561-017-0033-0, 2018.
Park, J. W., Gourmelen, N., Shepherd, A., Kim, S. W., Vaughan, D. G., and Wingham,
D. J.: Sustained retreat of the Pine Island Glacier, Geophys. Res. Lett., 40, 2137–2142,
https://doi.org/10.1002/grl.50379, 2013.
Petty, A. A., Holland, P. R., and Feltham, D. L.: Sea ice and the ocean mixed layer over the Antarctic shelf seas, The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, 2014.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive
dynamic thinning on the margins of the Greenland and Antarctic ice sheets,
Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van Den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting of
ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B ice
shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510,
https://doi.org/10.3189/172756404781814005, 2004.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs Antarctic Grounding Line from Differential Satellite
Radar Interferometry, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. U., and Thomas,
R.: Accelerated ice discharge from the Antarctic Peninsula following the
collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, 18,
https://doi.org/10.1029/2004GL020697, 2004.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic Ice Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011a.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping from
differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504,
https://doi.org/10.1029/2011GL047109, 2011b.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting Around
Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509,
https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2, Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1594/PANGAEA.896940, 2019.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez,
E., and Goldstein, R. M.: Synthetic aperture radar interferometry, Proc. IEEE, 88, 333–382,
https://doi.org/10.1109/5.838084, 2000.
Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern Larsen ice
shelf, Antarctica, Science, 271, 788–792,
https://doi.org/10.1126/science.271.5250.788, 1996.
Rott, H., Wuite, J., De Rydt, J., Gudmundsson, G. H., Floricioiu, D., and
Rack, W.: Impact of marine processes on flow dynamics of northern Antarctic
Peninsula outlet glaciers, Nat. Commun., 11, 1–3,
https://doi.org/10.1038/s41467-020-16658-y, 2020.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043, 2000.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B
embayment, Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004.
Scambos, T., Fricker, H. A., Liu, C. C., Bohlander, J., Fastook, J., Sargent,
A., Massom, R., and Wu, A. M.: Ice shelf disintegration by plate bending and
hydro-fracture: Satellite observations and model results of the 2008 Wilkins
ice shelf break-ups, Earth Planet. Sc. Lett., 280, 51–60,
https://doi.org/10.1016/j.epsl.2008.12.027, 2009.
Schannwell, C., Cornford, S., Pollard, D., and Barrand, N. E.: Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves, The Cryosphere, 12, 2307–2326, https://doi.org/10.5194/tc-12-2307-2018, 2018.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Selley, H. L., Hogg, A. E., Cornford, S., Dutrieux, P., Shepherd, A., Wuite,
J., Floricioiu, D., Kusk, A., Nagler, T., Gilbert, L., and Slater, T.:
Widespread increase in dynamic imbalance in the Getz region of Antarctica
from 1994 to 2018, Nat. Commun., 12, 1–10, https://doi.org/10.1038/s41467-021-21321-1,
2021.
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.
Steig, E. J., Ding, Q., Battisti, D. S., and Jenkins, A.: Tropical forcing of
Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen
Sea Embayment, West Antarctica, Ann. Glaciol., 53, 19–28,
https://doi.org/10.3189/2012AoG60A110, 2012.
The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Thoma, M., Jenkins, A., Holland, D., and Jacobs, S.: Modelling Circumpolar Deep
Water intrusions on the Amundsen Sea continental shelf, Antarctica, Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and van den Broeke, M. R.:
Satellite-based estimates of Antarctic surface meltwater fluxes, Geophys. Res. Lett., 40,
6148–6153, https://doi.org/10.1002/2013GL058138, 2013.
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S.,
Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of 21st
century warming on Antarctic Peninsula consistent with natural variability,
Nature, 535, 411–415, https://doi.org/10.1038/nature18645, 2016.
van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R.: An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, 2021.
Vaughan, D. G., Smith, A. M., Nath, P. C., and Meur, E. L.: Acoustic impedance and
basal shear stress beneath four Antarctic ice streams, Ann. Glaciol., 36, 225–232,
https://doi.org/10.3189/172756403781816437, 2003.
Vieli, A. and Nick, F. M.: Understanding and Modelling Rapid Dynamic Changes of
Tidewater Outlet Glaciers: Issues and Implications, Surv. Geophys., 32, 437–458,
https://doi.org/10.1007/s10712-011-9132-4, 2011.
Webber, B. G., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P.,
Jenkins, A., Jacobs, S. S., Ha, H. K., Lee, S. H., and Kim, T. W.: Mechanisms
driving variability in the ocean forcing of Pine Island Glacier, Nat. Commun., 8,
1–8, https://doi.org/10.1038/ncomms14507, 2017.
Winter, K., Hill, E. A., Gudmundsson, G. H., and Woodward, J.: Subglacial topography and ice flux along the English Coast of Palmer Land, Antarctic Peninsula, Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, 2020.
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M.: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013, The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, 2015.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002.
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first...