Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unravelling the long-term, locally heterogenous response of Greenland glaciers observed in archival photography
Michael A. Cooper
Department of Environment and Geography, University of York, York, UK
Paulina Lewińska
Department of Computer Science, University of York, York, UK
William A. P. Smith
Department of Computer Science, University of York, York, UK
Edwin R. Hancock
Department of Computer Science, University of York, York, UK
Julian A. Dowdeswell
Scott Polar Research Institute, University of Cambridge, Cambridge, UK
Department of Environment and Geography, University of York, York, UK
Related authors
No articles found.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Cited articles
Aviation Safety Network: G-AAZR de Havilland DH.60G Moth,
https://aviation-safety.net/wikibase/202285 (last access:
30 April 2021), 1999. a
Bahr, D. B., Pfeffer, W. T., Sassolas, C., and Meier, M. F.: Response time of
glaciers as a function of size and mass balance: 1. Theory, J.
Geophys. Res.-Sol. Ea., 103, 9777–9782,
https://doi.org/10.1029/98JB00507, 1998. a
Barr, I. D., Dokukin, M. D., Kougkoulos, I., Livingstone, S. J., Lovell, H.,
Małecki, J., and Muraviev, A. Y.: Using ArcticDEM to Analyse the Dimensions
and Dynamics of Debris-Covered Glaciers in Kamchatka, Russia, Geosciences, 8, 216,
https://doi.org/10.3390/geosciences8060216, 2018. a
Box, J. E. and Colgan, W.: Greenland Ice Sheet Mass Balance Reconstruction.
Part III: Marine Ice Loss and Total Mass Balance (1840–2010), J.
Climate, 26, 6990–7002, https://doi.org/10.1175/JCLI-D-12-00546.1, 2013. a, b
Błaszczyk, M., Ignatiuk, D., Grabiec, M., Kolondra, L., Laska, M., Decaux, L.,
Jania, J., Berthier, E., Luks, B., Barzycka, B., and Czapla, M.: Quality
Assessment and Glaciological Applications of Digital Elevation Models Derived
from Space-Borne and Aerial Images over Two Tidewater Glaciers of Southern
Spitsbergen, Remote Sens., 11, 1121, https://doi.org/10.3390/rs11091121,
2019. a
Cappelen, J. (Ed.): Greenland – DMI Historical Climate Data Collection 1784–2019, Danish Meteorological Institute [data set], https://www.dmi.dk/fileadmin/Rapporter/2020/DMIRep20-04.pdf (last access: 4 June 2021), 2020. a
Carr, J. R., Vieli, A., and Stokes, C.: Influence of sea ice decline,
atmospheric warming, and glacier width on marine-terminating outlet glacier
behavior in northwest Greenland at seasonal to interannual timescales,
J. Geophys. Res.-Earth Surf., 118, 1210–1226,
https://doi.org/10.1002/jgrf.20088, 2013. a
Casana, J. and Cothren, J.: Stereo analysis, DEM extraction and
orthorectification of CORONA satellite imagery: Archaeological applications
from the Near East, Antiquity, 82, 732–749, https://doi.org/10.1017/S0003598X00097349, 2015. a
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J., Bartholomaus,
T. C., Morlighem, M., Shroyer, E., and Nash, J.: Geometric Controls on
Tidewater Glacier Retreat in Central Western Greenland, J.
Geophys. Res.-Earth Surf., 123, 2024–2038,
https://doi.org/10.1029/2017JF004499, 2018. a, b, c
Crosby, B. T.: Comparing ArcticDEM against LiDAR in Alaska: Tests of
uncertainty in elevation and hydrologic delineation, in: AGU Fall Meeting
Abstracts, vol. 2016, pp. EP21D–0914, 2016. a
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G., Duncan, K.,
Rezvanbehbahani, S., van den Broeke, M. R., Simonsen, S. B., Nagarajan, S.,
and van Angelen, J. H.: Laser altimetry reveals complex pattern of Greenland
Ice Sheet dynamics, P. Natl. Acad. Sci. USA, 111,
18478–18483, https://doi.org/10.1073/pnas.1411680112, 2014. a
Dyurgerov, M. B. and Meier, M. F.: Twentieth century climate change: Evidence
from small glaciers, P. Natl. Acad. Sci. USA, 97,
1406–1411, https://doi.org/10.1073/pnas.97.4.1406, 2000. a
Earth Resources Observation and Science Center: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 1, USGS [data set], https://doi.org/10.5066/F78P5XZM, 2018. a, b, c
Enderlin, E., Howat, I., Jeong, S., Noh, M.-J., van angelen, J., and Van den
Broeke, M.: An Improved Mass Budget for the Greenland Ice Sheet, Geophys.
Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a, b, c
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020. a
Goliber, S., Black, T., Catania, G., Lea, J. M., Olsen, H., Cheng, D., Bevan, S., Bjørk, A., Bunce, C., Brough, S., Carr, J. R., Cowton, T., Gardner, A., Fahrner, D., Hill, E., Joughin, I., Korsgaard, N., Luckman, A., Moon, T., Murray, T., Sole, A., Wood, M., and Zhang, E.: TermPicks: A century of Greenland glacier terminus data for use in machine learning applications, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-311, in review, 2021. a
Goossens, R., DeWulf, A., Bourgeois, J., Gheyle, W., and Willems, T.: Satellite
imagery and archaeology: the example of CORONA in the Altai Mountains,
J. Archaeol. Sci., 33, 745–755,
https://doi.org/10.1016/j.jas.2005.10.010, 2006. a
Haeberli, W.: Modern Research Perspectives Relating to Permafrost Creep and
Rock Glaciers: A Discussion, Permafrost Perigl. Process., 11, 290–293, https://doi.org/10.1002/1099-1530(200012)11:4<290::AID-PPP372>3.0.CO;2-0, 2000. a
Hanna, E., Mernild, S., Cappelen, J., and Steffen, K.: Recent warming in
Greenland in a long-term instrumental (1881-2012) climatic context: I.
Evaluation of surface air temperature records, Environ. Res.
Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012. a, b, c, d
Hanna, E., Cappelen, J., Fettweis, X., Mernild, S. H., Mote, T. L., Mottram,
R., Steffen, K., Ballinger, T. J., and Hall, R. J.: Greenland surface air
temperature changes from 1981 to 2019 and implications for ice-sheet melt and
mass-balance change, Int. J. Climatol., 41, E1336–E1352,
https://doi.org/10.1002/joc.6771, 2021. a, b
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and
Fettweis, X.: Greater Greenland Ice Sheet contribution to global sea level
rise in CMIP6, Nat. Commun., 11, 6289, https://doi.org/10.1038/s41467-020-20011-8,
2020. a, b
Holmlund, P., Jansson, P., and Pettersson, R.: A re-analysis of the 58 year
mass-balance record of Storglaciären, Sweden, Ann. Glaciol., 42,
389–394, https://doi.org/10.3189/172756405781812547, 2005. a
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., and Scambos, T. A.:
Synchronous retreat and acceleration of southeast Greenland outlet glaciers
2000–06: ice dynamics and coupling to climate, J. Glaciol., 54,
646–660, https://doi.org/10.3189/002214308786570908, 2008. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C. Masson-Delmotte,, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K. Alegría,, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–35, https://doi.org/10.1017/9781009157964.001, 2019. a
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021. a, b
Ives, J.: Satellite Image Atlas of Glaciers of the World: Asia, edited by:
Williams Jr., R. S. and Ferrigno, J. G., ARCTIC, 64, 269–398,
https://doi.org/10.14430/arctic4129, 2011. a
Khan, S., Bjørk, A., Bamber, J., Morlighem, M., Bevis, M., Kjær, K.,
Mouginot, J., Løkkegaard, A., Holland, D., Aschwanden, A., Bao, Z., Helm,
V., Korsgaard, N., Colgan, W., Larsen, N., Liu, L., Hansen, K., Barletta, V.,
Dahl-Jensen, T., and Schenk, T.: Centennial response of Greenland's three
largest outlet glaciers, Nat. Commun., 11, 5718,
https://doi.org/10.1038/s41467-020-19580-5, 2020. a
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E.,
Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., van den Broeke, M.,
Siggaard-Andersen, M.-L., Nuth, C., Schomacker, A., Andresen, C. S.,
Willerslev, E., and Kjær, K. H.: Spatial and temporal distribution of mass
loss from the Greenland Ice Sheet since AD 1900, Nature, 528, 396–400,
https://doi.org/10.1038/nature16183, 2015. a
Korsgaard, N., Nuth, C., Khan, S., Kjeldsen, K., Bjørk, A., Schomacker, A.,
and Kjaer, K.: Digital elevation model and orthophotographs of Greenland
based on aerial photographs from 1978–1987, Sci. Data, 3, 1–15,
https://doi.org/10.1038/sdata.2016.32, 2016. a
Lamsters, K., Karušs, J., Krievāns, M., and Ješkins, J.: High-resolution
orthophoto map and digital surface models of the largest Argentine Islands
(the Antarctic) from unmanned aerial vehicle photogrammetry, J. Maps,
16, 335–347, https://doi.org/10.1080/17445647.2020.1748130, 2020. a
Lewińska, P., Rippin, D. M., Smith, W. A. P., Hancock, E., and Cooper, M. A.: Orthophotomaps of East Greenland, in particular of the 260 km-long section of coastline between 66.3 and 68.4∘ N, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942134, 2022. a
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B. E., and Ahn, Y.: Changes
in the dynamics of marine terminating outlet glaciers in west Greenland
(2000–2009), J. Geophys. Res.-Earth Surf., 116, 16,
https://doi.org/10.1029/2010JF001757, 2011. a
Meddens, A., Vierling, L. A., Eitel, J., Jennewein, J., White, J., and Wulder,
M.: Developing 5 m resolution canopy height and digital terrain models from
WorldView and ArcticDEM data, Remote Sens. Environ., 218, 174–188,
https://doi.org/10.1016/j.rse.2018.09.010, 2018. a, b
Mernild, S. H., Knudsen, N. T., Lipscomb, W. H., Yde, J. C., Malmros, J. K., Hasholt, B., and Jakobsen, B. H.: Increasing mass loss from Greenland's Mittivakkat Gletscher, The Cryosphere, 5, 341–348, https://doi.org/10.5194/tc-5-341-2011, 2011. a, b
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's outlet
glaciers from 1992 to 2007, J. Geophys. Res.-Earth Surf.,
113, 10, https://doi.org/10.1029/2007JF000927, 2008. a, b
Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I., and Fahnestock, M. A.:
Rapid Reconfiguration of the Greenland Ice Sheet Coastal Margin, J.
Geophys. Res.-Earth Surf., 125, e2020JF005585,
https://doi.org/10.1029/2020JF005585, 2020. a
Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates,
B., Willamson, C., and Peterman, K.: ArcticDEM; a publically available,
high resolution elevation model of the Arctic, in: EGU general assembly
conference abstracts, pp. EPSC2016–8396, 2016.
Morin, P., Porter, C., Cloutier, M., Ian, H., Noh, M., Willis, M., Williamson,
C., Bauer, G., Kramer, W., Bates, B., and Williamson, C.: ArcticDEM Year 3;
Improving Coverage, Repetition and Resolution, in: AGU Fall Meeting
Abstracts, vol. 2017, pp. C51A–0964, 2017. a
Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E.: Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge, The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, 2019. a
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116,
9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a, b, c, d, e, f, g
Murray, T., Scharrer, K., Selmes, N., Booth, A. D., James, T. D., Bevan, S. L.,
Bradley, J., Cook, S., Llana, L. C., Drocourt, Y., Dyke, L., Goldsack, A.,
Hughes, A. L., Luckman, A. J., and McGovern, J.: Extensive retreat of
Greenland tidewater glaciers, 2000-2010, Arctic, Antarctic, and Alpine
Research, 47, 427–447, https://doi.org/10.1657/AAAR0014-049, 2015. a, b
National Oceanography Centre: BODC Cruise Metadata Report for RRS James Clark Ross (74JC) cruise JR20040813 (JR106), Autosub under Arctic Sea Ice, National Oceanography Centre [data set], https://www.bodc.ac.uk/data/documents/cruise/6722/ (last access: 4 June 2021), 2004. a
Noh, M.-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation at
high latitudes: Surface Extraction with TIN-based Search-space Minimization
(SETSM) validation and demonstration over glaciated regions, GIScience &
Remote Sensing, 52, 198–217, https://doi.org/10.1080/15481603.2015.1008621, 2015. a
Park, H. and Lee, D. K.: Comparison Between Point Cloud and Mesh Models Using
Images from an Unmanned Aerial Vehicle, Measurement, 138,
https://doi.org/10.1016/j.measurement.2019.02.023, 2019. a
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R., Nagler,
T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources and
guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project,
Remote Sens. Environ., 203, 256–275,
https://doi.org/10.1016/j.rse.2017.08.038, 2017. a
Pieczonka, T., Bolch, T., and Buchroithner, M.: Generation and evaluation of
multitemporal digital terrain models of the Mt. Everest area from different
optical sensors, ISPRS J. Photogramm. Remote Sens., 66,
https://doi.org/10.1016/j.isprsjprs.2011.07.003, 2011. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C. Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Harvard Dataverse, V1 [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018a. a
Porter, D. F., Tinto, K. J., Boghosian, A. L., Csatho, B. M., Bell, R. E., and
Cochran, J. R.: Identifying Spatial Variability in Greenland's Outlet Glacier
Response to Ocean Heat, Front. Earth Sci., 6, 90,
https://doi.org/10.3389/feart.2018.00090, 2018b. a, b, c
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., and Paul, F.: The first complete inventory of the local glaciers and ice caps on Greenland, The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, 2012. a
Raup, B., Khalsa, S. J., and Armstrong, R.: Creating improved ASTER DEMs over
glacierized terrain, AGU Fall Meeting Abstracts, 2006. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 22,
https://doi.org/10.1029/2002JD002670, 2003. a, b
Rippin, D. M., Sharp, M., Van Wychen, W., and Zubot, D.: `Detachment' of
icefield outlet glaciers: catastrophic thinning and retreat of the Columbia
Glacier (Canada), Earth Surf. Process. Landf., 45, 459–472,
https://doi.org/10.1002/esp.4746, 2020. a
Rippin, D. M., Smith, W. A. P.; Cooper, M. A., Hancock, E., and Lewińska, P.: East Greenland (66.3 and 68.4∘ N) glacier front position shape files, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.941995, 2022. a
Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., Holt, T. O., and Snooke, N.: UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet, The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, 2015. a
Seale, A., Christoffersen, P., Mugford, R. I., and O'Leary, M.: Ocean forcing
of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified
by automatic satellite monitoring of eastern outlet glaciers, J.
Geophys. Res.-Earth Surf., 116, 16,
https://doi.org/10.1029/2010JF001847, 2011. a
Shepherd, A. and IMBIE Team: Mass balance of the Greenland Ice Sheet from
1992 to 2018, Nature, 579, 233, https://doi.org/10.1038/s41586-019-1855-2, 2020. a, b, c, d
Stephenson, A.: Kangerdlugsuak and Mount Forel: Two Journeys on the British
Arctic Air Route Expedition, The Geographical Journal, 80, 1–12, 1932. a
Twila, M., Joughin, I., Smith, B., and Howat, I.: 21st-Century Evolution of Greenland Outlet Glacier Velocities, Science, 336, 576–578,
https://doi.org/10.1126/science.1219985, 2012. a
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016. a, b, c, d, e
Wake, L., Huybrechts, P., Box, J., Hanna, E., Janssens, I., and Milne, G.:
Surface mass-balance changes of the Greenland ice sheetc since 1866, Ann. Glaciol., 50, 178–184, https://doi.org/10.3189/172756409787769636, 2009. a, b
Watkins, H. G.: The British Arctic Air Route Expedition, The Geographical
Journal, 76, 426–427, 1930. a
Wood, M., Rignot, E., Fenty, I., Menemenlis, D., Millan, R., Morlighem, M.,
Mouginot, J., and Seroussi, H.: Ocean-Induced Melt Triggers Glacier Retreat
in Northwest Greenland, Geophys. Res. Lett., 45, 8334–8342,
https://doi.org/10.1029/2018GL078024, 2018. a, b
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai,
C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7, 10,
https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d, e, f, g, h, i, j, k, l
Yurtseven, H., Akgul, M., Coban, S., and Gulci, S.: Determination and
accuracy analysis of individual tree crown parameters using UAV based imagery
and OBIA techniques, Measurements, 145, 651–664,
https://doi.org/10.1016/j.measurement.2019.05.092, 2019. a
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Here we use old photographs gathered several decades ago to expand the temporal record of...