Articles | Volume 16, issue 6
Research article
23 Jun 2022
Research article |  | 23 Jun 2022

Unravelling the long-term, locally heterogenous response of Greenland glaciers observed in archival photography

Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin

Related authors

Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115,,, 2019
A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854,,, 2018
Short summary
Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264,,, 2017
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, northern Greenland, between 2016 and 2020
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750,,, 2023
Short summary
Choice of observation type affects Bayesian calibration of Greenland Ice Sheet model simulations
Denis Felikson, Sophie Nowicki, Isabel Nias, Beata Csatho, Anton Schenk, Michael J. Croteau, and Bryant Loomis
The Cryosphere, 17, 4661–4673,,, 2023
Short summary
Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet
Johanna Beckmann and Ricarda Winkelmann
The Cryosphere, 17, 3083–3099,,, 2023
Short summary
Precursor of disintegration of Greenland's largest floating ice tongue
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870,,, 2023
Short summary
Evaluating different geothermal heat flow maps as basal boundary conditions during spin up of the Greenland ice sheet
Tong Zhang, William Colgan, Agnes Wansing, Anja Løkkegaard, Gunter Leguy, William Lipscomb, and Cunde Xiao
The Cryosphere Discuss.,,, 2023
Revised manuscript accepted for TC
Short summary

Cited articles

Agisoft Metashape: Agisoft Metashape User Manual, Professional Edition, Version 1.7, (last access: 30 April 2021), 2020. a, b
Aviation Safety Network: G-AAZR de Havilland DH.60G Moth, (last access: 30 April 2021), 1999. a
Bahr, D. B., Pfeffer, W. T., Sassolas, C., and Meier, M. F.: Response time of glaciers as a function of size and mass balance: 1. Theory, J. Geophys. Res.-Sol. Ea., 103, 9777–9782,, 1998. a
Barr, I. D., Dokukin, M. D., Kougkoulos, I., Livingstone, S. J., Lovell, H., Małecki, J., and Muraviev, A. Y.: Using ArcticDEM to Analyse the Dimensions and Dynamics of Debris-Covered Glaciers in Kamchatka, Russia, Geosciences, 8, 216,, 2018. a
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland , Nat. Geosci., 5, 427–432, 2012. a, b, c, d
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.