Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1609-2022
https://doi.org/10.5194/tc-16-1609-2022
Research article
 | 
05 May 2022
Research article |  | 05 May 2022

The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast

Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper

Related authors

Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021,https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Estimates of tropical cyclone geometry parameters based on best-track data
Kees Nederhoff, Alessio Giardino, Maarten van Ormondt, and Deepak Vatvani
Nat. Hazards Earth Syst. Sci., 19, 2359–2370, https://doi.org/10.5194/nhess-19-2359-2019,https://doi.org/10.5194/nhess-19-2359-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
Phase-field models of floe fracture in sea ice
Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, and Georg Stadler
The Cryosphere, 17, 3883–3893, https://doi.org/10.5194/tc-17-3883-2023,https://doi.org/10.5194/tc-17-3883-2023, 2023
Short summary
The effect of partial dissolution on sea-ice chemical transport: a combined model–observational study using poly- and perfluoroalkylated substances (PFASs)
Max Thomas, Briana Cate, Jack Garnett, Inga J. Smith, Martin Vancoppenolle, and Crispin Halsall
The Cryosphere, 17, 3193–3201, https://doi.org/10.5194/tc-17-3193-2023,https://doi.org/10.5194/tc-17-3193-2023, 2023
Short summary
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023,https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Sea ice cover in the Copernicus Arctic Regional Reanalysis
Yurii Batrak, Bin Cheng, and Viivi Kallio-Myers
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-74,https://doi.org/10.5194/tc-2023-74, 2023
Revised manuscript accepted for TC
Short summary
Understanding influence of ocean waves on Arctic sea ice simulation: A modeling study with an atmosphere-ocean-wave-sea ice coupled model
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-79,https://doi.org/10.5194/tc-2023-79, 2023
Revised manuscript accepted for TC
Short summary

Cited articles

Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. J. G., Williams, T. D., Bertino, L., and Bergh, J.: On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice, Mar. Policy, 75, 300–317, https://doi.org/10.1016/j.marpol.2015.12.027, 2017. 
Barnhart, K. R., Overeem, I., and Anderson, R. S.: The effect of changing sea ice on the physical vulnerability of Arctic coasts, The Cryosphere, 8, 1777–1799, https://doi.org/10.5194/tc-8-1777-2014, 2014. 
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions. I- Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98jc02622, 1999. 
Casas-Prat, M. and Wang, X. L.: Projections of Extreme Ocean Waves in the Arctic and Potential Implications for Coastal Inundation and Erosion, J. Geophys. Res.-Ocean., 125, e2019JC015745, https://doi.org/10.1029/2019JC015745, 2020. 
Casas-Prat, M., Wang, X. L., and Swart, N.: CMIP5-based global wave climate projections including the entire Arctic Ocean, Ocean Model., 123, 66–85, https://doi.org/10.1016/j.ocemod.2017.12.003, 2018. 
Download
Short summary
Diminishing sea ice is impacting waves across the Arctic region. Recent work shows the effect of the sea ice on offshore waves; however, effects within the nearshore are less known. This study characterizes the wave climate in the central Beaufort Sea coast of Alaska. We show that the reduction of sea ice correlates strongly with increases in the average and extreme waves. However, found trends deviate from offshore, since part of the increase in energy is dissipated before reaching the shore.