Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411,
https://doi.org/10.1038/ngeo863, 2010.
a,
b
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., and Jackson,
R. H.: Future Evolution of Greenland's Marine‐Terminating Outlet
Glaciers, J. Geophys. Res.-Earth Surf., 125, 1–28,
https://doi.org/10.1029/2018JF004873, 2020.
a,
b,
c
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a
primary driver of Greenland ice sheet mass loss over the next century,
Commun. Earth Environ., 2, 26,
https://doi.org/10.1038/s43247-021-00092-z,
2021.
a
Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., and
Vaughan, D. G.: Ocean forcing of glacier retreat in the western Antarctic
Peninsula, Science, 353, 283–286,
https://doi.org/10.1126/science.aae0017, 2016.
a
Dowdeswell, J. A., Drewry, D., Cooper, A., Gorman, M., Liestøl, O., and
Orheim, O.: Digital Mapping of the Nordaustlandet Ice Caps from Airborne
Geophysical Investigations, Ann. Glaciol., 8, 51–58,
https://doi.org/10.3189/S0260305500001130, 1986.
a
Dowdeswell, J. A., Benham, T. J., Strozzi, T., and Hagen, J. O.: Iceberg
calving flux and mass balance of the Austfonna ice cap on Nordaustlandet,
Svalbard, J. Geophys. Res.-Earth Surf., 113, F03022,
https://doi.org/10.1029/2007JF000905, 2008.
a,
b,
c,
d
Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., and Reijmer, C. H.: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt, The Cryosphere, 9, 197–215,
https://doi.org/10.5194/tc-9-197-2015, 2015.
a,
b,
c,
d,
e
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970,
https://doi.org/10.5194/tc-11-949-2017, 2017.
a,
b
Felikson, D.: dfelikson/GrIS-thinning-limits-and-knickpoints: Release v1.0 of GrIS-thinning-limits-and-knickpoints repository (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.4284715, 2020.
a
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J., Kjær,
K. H., Morlighem, M., Noël, B., Van Den Broeke, M., Stearns, L. A.,
Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on the
Greenland ice sheet controlled by outlet glacier geometry, Nat. Geosci., 10, 366–369,
https://doi.org/10.1038/ngeo2934, 2017.
a,
b,
c,
d,
e
Felikson, D., Catania, G., Bartholomaus, T., Morlighem, M., and Noël, B.: Inland limits to diffusion of thinning along Greenland Ice Sheet outlet glaciers (v1.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.4284759, 2020.
a
Felikson, D., Catania, G. A., Bartholomaus, T. C., Morlighem, M., and
Noël, B. P.: Steep Glacier Bed Knickpoints Mitigate Inland Thinning in
Greenland, Geophys. Res. Lett., 48, 1–10,
https://doi.org/10.1029/2020GL090112, 2021.
a,
b,
c,
d,
e,
f,
g
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt over
decadal timescales on land-terminating Greenland-type outlet glaciers,
J. Glaciol., 64, 700–710,
https://doi.org/10.1017/jog.2018.59, 2018.
a
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547,
https://doi.org/10.5194/tc-12-521-2018, 2018.
a,
b
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional
Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center (NSIDC) [data set],
https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
a
Gong, Y., Zwinger, T., Åström, J., Altena, B., Schellenberger, T., Gladstone, R., and Moore, J. C.: Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap, The Cryosphere, 12, 1563–1577,
https://doi.org/10.5194/tc-12-1563-2018, 2018.
a,
b,
c
Haga, O. N., McNabb, R., Nuth, C., Altena, B., Schellenberger, T., and
Kääb, A.: From high friction zone to frontal collapse: dynamics
of an ongoing tidewater glacier surge, Negribreen, Svalbard, J. Glaciol., 66, 742–754,
https://doi.org/10.1017/jog.2020.43, 2020.
a
Hagen, J. O., Liestøl, O., Roland, E., and Jørgensen, T.: Glacier atlas
of Svalbard and Jan Mayen, in: Meddelelser 129, 141, Norsk
polarinstitutt, 1993. a
Hoffman, M. J., Perego, M., Andrews, L. C., Price, S. F., Neumann, T. A.,
Johnson, J. V., Catania, G., and Lüthi, M. P.: Widespread Moulin
Formation During Supraglacial Lake Drainages in Greenland, Geophys. Res. Lett., 45, 778–788,
https://doi.org/10.1002/2017GL075659, 2018.
a,
b
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664,
https://doi.org/10.1038/ngeo316, 2008.
a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518,
https://doi.org/10.5194/tc-8-1509-2014, 2014.
a
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon, T.:
Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet,
Science, 320, 781–783,
https://doi.org/10.1126/science.1153288, 2008.
a
Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D., and Krieger, L.:
Seasonal and interannual variabilities in terminus position, glacier
velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from
2008 to 2016, J. Geophys. Res.-Earth Surf., 122,
1635–1652,
https://doi.org/10.1002/2016JF004133, 2017.
a,
b,
c
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y.,
van den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two
decades of Jakobshavn Isbrae acceleration and thinning as regional ocean
cools, Nat. Geosci., 12, 277–283,
https://doi.org/10.1038/s41561-019-0329-3,
2019.
a
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825,
https://doi.org/10.5194/tc-12-3813-2018, 2018.
a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth Environ., 1, 1,
https://doi.org/10.1038/s43247-020-0001-2,
2020.
a
Lei, Y., Gardner, A., and Agram, P.: Autonomous Repeat Image Feature Tracking
(autoRIFT) and Its Application for Tracking Ice Displacement, Remote
Sens., 13, 749,
https://doi.org/10.3390/rs13040749, 2021.
a
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B. E., and Ahn, Y.: Changes
in the dynamics of marine terminating outlet glaciers in west Greenland
(2000–2009), J. Geophys. Res.-Earth Surf., 116, 1–16,
https://doi.org/10.1029/2010JF001757, 2011.
a
McMillan, M., Shepherd, A., Gourmelen, N., Dehecq, A., Leeson, A., Ridout, A.,
Flament, T., Hogg, A., Gilbert, L., Benham, T., Van Den Broeke, M.,
Dowdeswell, J. A., Fettweis, X., Noël, B., and Strozzi, T.: Rapid
dynamic activation of a marine-based Arctic ice cap, Geophys. Res. Lett., 41, 8902–8909,
https://doi.org/10.1002/2014GL062255, 2014.
a,
b,
c,
d
Moon, T., Fisher, M., Harden, L., and Stafford, T.: QGreenland (v1.0.1), Zenodo,
https://doi.org/10.5281/zenodo.4558266, 2021.
a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber,
J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B.,
Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
a
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years
of Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci., 116, 9239–9244,
https://doi.org/10.1073/pnas.1904242116,
2019.
a,
b
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in
Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114,
https://doi.org/10.1038/ngeo394, 2009.
a
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards,
T. L., Pattyn, F., and van de Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238,
https://doi.org/10.1038/nature12068, 2013.
a
Palmer, S., Shepherd, A., Nienow, P., and Joughin, I.: Seasonal speedup of the
Greenland Ice Sheet linked to routing of surface water, Earth Planet.
Sc. Lett., 302, 423–428,
https://doi.org/10.1016/j.epsl.2010.12.037, 2011.
a
Poinar, K., Joughin, I., Das, S. B., Behn, M. D., Lenaerts, J. T. M., and
Broeke, M. R.: Limits to future expansion of surface‐melt‐enhanced ice
flow into the interior of western Greenland, Geophys. Res. Lett.,
42, 1800–1807,
https://doi.org/10.1002/2015GL063192, 2015.
a,
b
Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head,
T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda,
Y., Perez, F., Ragan-Kelley, B., and Willing, C.: Binder 2.0 - Reproducible,
Interactive, Sharable Environments for Science at Scale, in: The 17th Python
in Science Conference,
https://doi.org/10.25080/Majora-4af1f417-011, 2018.
a
Rathmann, N. M., Hvidberg, C. S., Solgaard, A. M., Grinsted, A., Gudmundsson,
G. H., Langen, P. L., Nielsen, K. P., and Kusk, A.: Highly temporally
resolved response to seasonal surface melt of the Zachariae and 79N outlet
glaciers in northeast Greenland, Geophys. Res. Lett., 44,
9805–9814,
https://doi.org/10.1002/2017GL074368, 2017.
a,
b,
c
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space,
https://doi.org/10.7265/N5-RGI-60, 2017.
a
Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, The Cryosphere, 15, 407–429,
https://doi.org/10.5194/tc-15-407-2021, 2021.
a
Sánchez-Gámez, P., Navarro, F. J., Benham, T. J., Glazovsky, A. F.,
Bassford, R. P., and Dowdeswell, J. A.: Intra- and inter-annual variability
in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya,
Russian Arctic, and its role in modulating mass balance, J. Glaciol., 65, 780–797,
https://doi.org/10.1017/jog.2019.58, 2019.
a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964.
a
Seddik, H., Greve, R., Sakakibara, D., Tsutaki, S., Minowa, M., and Sugiyama,
S.: Response of the flow dynamics of Bowdoin Glacier, northwestern
Greenland, to basal lubrication and tidal forcing, J. Glaciol.,
65, 225–238,
https://doi.org/10.1017/jog.2018.106, 2019.
a,
b
Strozzi, T., Kääb, A., and Schellenberger, T.: Frontal destabilization of Stonebreen, Edgeøya, Svalbard, The Cryosphere, 11, 553–566,
https://doi.org/10.5194/tc-11-553-2017, 2017a.
a,
b
Strozzi, T., Paul, F., Wiesmann, A., Schellenberger, T., and Kääb,
A.: Circum-arctic changes in the flow of glaciers and ice caps from
satellite SAR data between the 1990s and 2017, Remote Sens., 9, 947,
https://doi.org/10.3390/rs9090947, 2017b.
a,
b
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts,
P.: Melt-induced speed-up of Greenland ice sheet offset by efficient
subglacial drainage, Nature, 469, 521–524,
https://doi.org/10.1038/nature09740, 2011.
a
Sundal, A. V., Shepherd, A., van den Broeke, M., Van Angelen, J., Gourmelen,
N., and Park, J.: Controls on short-term variations in Greenland glacier
dynamics, J. Glaciol., 59, 883–892,
https://doi.org/10.3189/2013JoG13J019,
2013.
a,
b
Tedstone, A. J., Nienow, P. W., Sole, A. J., Mair, D. W. F., Cowton, T. R.,
Bartholomew, I. D., and King, M. A.: Greenland ice sheet motion insensitive
to exceptional meltwater forcing, P. Natl. Acad.
Sci. USA, 110, 19719–19724,
https://doi.org/10.1073/pnas.1315843110, 2013.
a
van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P.,
Reijmer, C. H., Donker, J. J. A., and Oerlemans, J.: Large and Rapid
Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice
Sheet, Science, 321, 111–113,
https://doi.org/10.1126/science.1158540, 2008.
a
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote,
P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and
Zhang, T.: Ch. 4. Observations: Cryosphere, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., chap. 4, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
https://www.ipcc.ch/report/ar5/wg1/ (last access: 23 February 2022), 2013. a
Walsh, K. M., Howat, I. M., Ahn, Y., and Enderlin, E. M.: Changes in the marine-terminating glaciers of central east Greenland, 2000–2010, The Cryosphere, 6, 211–220,
https://doi.org/10.5194/tc-6-211-2012, 2012.
a
Williams, J. J., Gourmelen, N., and Nienow, P.: Dynamic response of the
Greenland ice sheet to recent cooling, Sci. Rep.-UK, 10, 1647,
https://doi.org/10.1038/s41598-020-58355-2, 2020.
a
Williams, J. J., Gourmelen, N., and Nienow, P.: Complex multi-decadal ice
dynamical change inland of marine-terminating glaciers on the Greenland Ice
Sheet, J. Glaciol., 67, 833–846,
https://doi.org/10.1017/jog.2021.31, 2021.
a,
b
Willis, M. J., Zheng, W., Durkin, W. J., Pritchard, M. E., Ramage, J. M.,
Dowdeswell, J. A., Benham, T. J., Bassford, R. P., Stearns, L. A., Glazovsky,
A. F., Macheret, Y. Y., and Porter, C. C.: Massive destabilization of an
Arctic ice cap, Earth Planet. Sc. Lett., 502, 146–155,
https://doi.org/10.1016/j.epsl.2018.08.049, 2018.
a,
b,
c,
d
Wood, M.,
Rignot, E.,
Bjørk, A.,
van den Broeke, M.,
Fenty, I.,
Menemenlis, D.,
Morlighem, M.,
Mouginot, J.,
Noël, B.,
Scheuchl, B.,
Willis, J.,
Zhang, H.,
An, L.,
Cai, C.,
Kane, E.,
Millan, R.,
and Velicogna, I.: Greenland Marine-Terminating Glacier Retreat Data, Dryad [data set],
https://doi.org/10.7280/D1667W, 2020.
a
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai,
C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7,
1–11,
https://doi.org/10.1126/sciadv.aba7282, 2021.
a,
b,
c,
d,
e
Zheng, W., Pritchard, M. E., Willis, M. J., and Stearns, L. A.: The possible
transition from glacial surge to ice stream on Vavilov Ice Cap, Geophys. Res. Lett., 46, 13892–13902,
https://doi.org/10.1029/2019GL084948, 2019.
a,
b,
c,
d,
e,
f,
g,
h,
i
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science,
297, 218–222,
https://doi.org/10.1126/science.1072708, 2002.
a