Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Department of Statistics, University of California Berkeley, Berkeley, CA, USA
Related authors
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Whyjay Zheng, Wesley Van Wychen, Tian Li, and Tsutomu Yamanokuchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2707, https://doi.org/10.5194/egusphere-2025-2707, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We identify lakes beneath the glaciers in the Canadian Arctic using satellite measurements over a decade, increasing the number of known subglacial lakes in this area from 2 to 37. These lakes are recharged by billions of cubic meters of water, and the draining of these lakes can lower the ice elevation by more than 100 meters. We find three types of subglacial lakes, two of which are primarily located in the Canadian Arctic. When glaciers lose their ice quickly, these lakes become active.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Whyjay Zheng, Wesley Van Wychen, Tian Li, and Tsutomu Yamanokuchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2707, https://doi.org/10.5194/egusphere-2025-2707, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We identify lakes beneath the glaciers in the Canadian Arctic using satellite measurements over a decade, increasing the number of known subglacial lakes in this area from 2 to 37. These lakes are recharged by billions of cubic meters of water, and the draining of these lakes can lower the ice elevation by more than 100 meters. We find three types of subglacial lakes, two of which are primarily located in the Canadian Arctic. When glaciers lose their ice quickly, these lakes become active.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Cited articles
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010. a, b
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of
glacier surges, J. Glaciol., 65, 701–716,
https://doi.org/10.1017/jog.2019.62, 2019. a
Bindschadler, R.: Actively surging West Antarctic ice streams and their
response characteristics, Ann. Glaciol., 24, 409–414,
https://doi.org/10.3189/S0260305500012520, 1997. a
Carr, J. R., Stokes, C. R., and Vieli, A.: Recent progress in understanding
marine-terminating Arctic outlet glacier response to climatic and oceanic
forcing: Twenty years of rapid change, Prog. Phys. Geogr., 37,
436–467, https://doi.org/10.1177/0309133313483163, 2013. a
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in
marine-terminating outlet glacier retreat rates across the Atlantic Arctic:
1992–2010, Ann. Glaciol., 58, 72–91, https://doi.org/10.1017/aog.2017.3, 2017. a, b, c
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., and Jackson,
R. H.: Future Evolution of Greenland's Marine‐Terminating Outlet
Glaciers, J. Geophys. Res.-Earth Surf., 125, 1–28,
https://doi.org/10.1029/2018JF004873, 2020. a, b, c
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a
primary driver of Greenland ice sheet mass loss over the next century,
Commun. Earth Environ., 2, 26, https://doi.org/10.1038/s43247-021-00092-z,
2021. a
Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., and
Vaughan, D. G.: Ocean forcing of glacier retreat in the western Antarctic
Peninsula, Science, 353, 283–286, https://doi.org/10.1126/science.aae0017, 2016. a
Dowdeswell, J. A., Drewry, D., Cooper, A., Gorman, M., Liestøl, O., and
Orheim, O.: Digital Mapping of the Nordaustlandet Ice Caps from Airborne
Geophysical Investigations, Ann. Glaciol., 8, 51–58,
https://doi.org/10.3189/S0260305500001130, 1986. a
Dowdeswell, J. A., Benham, T. J., Strozzi, T., and Hagen, J. O.: Iceberg
calving flux and mass balance of the Austfonna ice cap on Nordaustlandet,
Svalbard, J. Geophys. Res.-Earth Surf., 113, F03022,
https://doi.org/10.1029/2007JF000905, 2008. a, b, c, d
Executable Books Community: Jupyter Book (v0.10), Zenodo,
https://doi.org/10.5281/zenodo.4539666, 2020. a
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017. a, b
Felikson, D.: dfelikson/GrIS-thinning-limits-and-knickpoints: Release v1.0 of GrIS-thinning-limits-and-knickpoints repository (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4284715, 2020. a
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J., Kjær,
K. H., Morlighem, M., Noël, B., Van Den Broeke, M., Stearns, L. A.,
Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on the
Greenland ice sheet controlled by outlet glacier geometry, Nat. Geosci., 10, 366–369, https://doi.org/10.1038/ngeo2934, 2017. a, b, c, d, e
Felikson, D., Catania, G., Bartholomaus, T., Morlighem, M., and Noël, B.: Inland limits to diffusion of thinning along Greenland Ice Sheet outlet glaciers (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4284759, 2020. a
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt over
decadal timescales on land-terminating Greenland-type outlet glaciers,
J. Glaciol., 64, 700–710, https://doi.org/10.1017/jog.2018.59, 2018. a
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018. a, b
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional
Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center (NSIDC) [data set], https://doi.org/10.5067/6II6VW8LLWJ7, 2019. a
Gong, Y., Zwinger, T., Åström, J., Altena, B., Schellenberger, T., Gladstone, R., and Moore, J. C.: Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap, The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, 2018. a, b, c
Haga, O. N., McNabb, R., Nuth, C., Altena, B., Schellenberger, T., and
Kääb, A.: From high friction zone to frontal collapse: dynamics
of an ongoing tidewater glacier surge, Negribreen, Svalbard, J. Glaciol., 66, 742–754, https://doi.org/10.1017/jog.2020.43, 2020. a
Hagen, J. O., Liestøl, O., Roland, E., and Jørgensen, T.: Glacier atlas
of Svalbard and Jan Mayen, in: Meddelelser 129, 141, Norsk
polarinstitutt, 1993. a
Hewitt, I.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sc. Lett., 371–372, 16–25,
https://doi.org/10.1016/j.epsl.2013.04.022, 2013. a
Hoffman, M. J., Perego, M., Andrews, L. C., Price, S. F., Neumann, T. A.,
Johnson, J. V., Catania, G., and Lüthi, M. P.: Widespread Moulin
Formation During Supraglacial Lake Drainages in Greenland, Geophys. Res. Lett., 45, 778–788, https://doi.org/10.1002/2017GL075659, 2018. a, b
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon, T.:
Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet,
Science, 320, 781–783, https://doi.org/10.1126/science.1153288, 2008. a
Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D., and Krieger, L.:
Seasonal and interannual variabilities in terminus position, glacier
velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from
2008 to 2016, J. Geophys. Res.-Earth Surf., 122,
1635–1652, https://doi.org/10.1002/2016JF004133, 2017. a, b, c
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y.,
van den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two
decades of Jakobshavn Isbrae acceleration and thinning as regional ocean
cools, Nat. Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3,
2019. a
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth Environ., 1, 1, https://doi.org/10.1038/s43247-020-0001-2,
2020. a
Lei, Y., Gardner, A., and Agram, P.: Autonomous Repeat Image Feature Tracking
(autoRIFT) and Its Application for Tracking Ice Displacement, Remote
Sens., 13, 749, https://doi.org/10.3390/rs13040749, 2021. a
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B. E., and Ahn, Y.: Changes
in the dynamics of marine terminating outlet glaciers in west Greenland
(2000–2009), J. Geophys. Res.-Earth Surf., 116, 1–16,
https://doi.org/10.1029/2010JF001757, 2011. a
McMillan, M., Shepherd, A., Gourmelen, N., Dehecq, A., Leeson, A., Ridout, A.,
Flament, T., Hogg, A., Gilbert, L., Benham, T., Van Den Broeke, M.,
Dowdeswell, J. A., Fettweis, X., Noël, B., and Strozzi, T.: Rapid
dynamic activation of a marine-based Arctic ice cap, Geophys. Res. Lett., 41, 8902–8909, https://doi.org/10.1002/2014GL062255, 2014. a, b, c, d
Moholdt, G. and Kääb, A.: A new DEM of the Austfonna ice cap by
combining differential SAR interferometry with ICESat laser altimetry, Polar
Res., 31, 18460, https://doi.org/10.3402/polar.v31i0.18460, 2012. a
Moon, T., Fisher, M., Harden, L., and Stafford, T.: QGreenland (v1.0.1), Zenodo,
https://doi.org/10.5281/zenodo.4558266, 2021. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber,
J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B.,
Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017. a
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years
of Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci., 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116,
2019. a, b
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in
Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114, https://doi.org/10.1038/ngeo394, 2009. a
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards,
T. L., Pattyn, F., and van de Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238, https://doi.org/10.1038/nature12068, 2013. a
Nye, J. F.: The response of a glacier to changes in the rate of nourishment
and wastage, P. Roy. Soc. Lond. A, 275, 87–112,
https://doi.org/10.1098/rspa.1963.0157, 1963. a
Palmer, S., Shepherd, A., Nienow, P., and Joughin, I.: Seasonal speedup of the
Greenland Ice Sheet linked to routing of surface water, Earth Planet.
Sc. Lett., 302, 423–428, https://doi.org/10.1016/j.epsl.2010.12.037, 2011. a
Poinar, K., Joughin, I., Das, S. B., Behn, M. D., Lenaerts, J. T. M., and
Broeke, M. R.: Limits to future expansion of surface‐melt‐enhanced ice
flow into the interior of western Greenland, Geophys. Res. Lett.,
42, 1800–1807, https://doi.org/10.1002/2015GL063192, 2015. a, b
Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head,
T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda,
Y., Perez, F., Ragan-Kelley, B., and Willing, C.: Binder 2.0 - Reproducible,
Interactive, Sharable Environments for Science at Scale, in: The 17th Python
in Science Conference, https://doi.org/10.25080/Majora-4af1f417-011, 2018. a
Rathmann, N. M., Hvidberg, C. S., Solgaard, A. M., Grinsted, A., Gudmundsson,
G. H., Langen, P. L., Nielsen, K. P., and Kusk, A.: Highly temporally
resolved response to seasonal surface melt of the Zachariae and 79N outlet
glaciers in northeast Greenland, Geophys. Res. Lett., 44,
9805–9814, https://doi.org/10.1002/2017GL074368, 2017. a, b, c
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, https://doi.org/10.7265/N5-RGI-60, 2017. a
Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, 2021. a
Sánchez-Gámez, P., Navarro, F. J., Benham, T. J., Glazovsky, A. F.,
Bassford, R. P., and Dowdeswell, J. A.: Intra- and inter-annual variability
in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya,
Russian Arctic, and its role in modulating mass balance, J. Glaciol., 65, 780–797, https://doi.org/10.1017/jog.2019.58, 2019. a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964. a
Schytt, V.: Some comments on glacier surges in eastern Svalbard, Can.
J. Earth Sci., 6, 867–873, https://doi.org/10.1139/e69-088, 1969. a, b
Seddik, H., Greve, R., Sakakibara, D., Tsutaki, S., Minowa, M., and Sugiyama,
S.: Response of the flow dynamics of Bowdoin Glacier, northwestern
Greenland, to basal lubrication and tidal forcing, J. Glaciol.,
65, 225–238, https://doi.org/10.1017/jog.2018.106, 2019. a, b
Strozzi, T., Kääb, A., and Schellenberger, T.: Frontal destabilization of Stonebreen, Edgeøya, Svalbard, The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, 2017a. a, b
Strozzi, T., Paul, F., Wiesmann, A., Schellenberger, T., and Kääb,
A.: Circum-arctic changes in the flow of glaciers and ice caps from
satellite SAR data between the 1990s and 2017, Remote Sens., 9, 947,
https://doi.org/10.3390/rs9090947, 2017b. a, b
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts,
P.: Melt-induced speed-up of Greenland ice sheet offset by efficient
subglacial drainage, Nature, 469, 521–524, https://doi.org/10.1038/nature09740, 2011. a
Sundal, A. V., Shepherd, A., van den Broeke, M., Van Angelen, J., Gourmelen,
N., and Park, J.: Controls on short-term variations in Greenland glacier
dynamics, J. Glaciol., 59, 883–892, https://doi.org/10.3189/2013JoG13J019,
2013. a, b
Tedstone, A. J., Nienow, P. W., Sole, A. J., Mair, D. W. F., Cowton, T. R.,
Bartholomew, I. D., and King, M. A.: Greenland ice sheet motion insensitive
to exceptional meltwater forcing, P. Natl. Acad.
Sci. USA, 110, 19719–19724, https://doi.org/10.1073/pnas.1315843110, 2013. a
Thomas, R. H. and Bentley, C. R.: A Model for Holocene Retreat of the West
Antarctic Ice Sheet, Quaternary Res., 10, 150–170,
https://doi.org/10.1016/0033-5894(78)90098-4, 1978. a
van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P.,
Reijmer, C. H., Donker, J. J. A., and Oerlemans, J.: Large and Rapid
Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice
Sheet, Science, 321, 111–113, https://doi.org/10.1126/science.1158540, 2008. a
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote,
P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and
Zhang, T.: Ch. 4. Observations: Cryosphere, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., chap. 4, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/ar5/wg1/ (last access: 23 February 2022), 2013. a
Walsh, K. M., Howat, I. M., Ahn, Y., and Enderlin, E. M.: Changes in the marine-terminating glaciers of central east Greenland, 2000–2010, The Cryosphere, 6, 211–220, https://doi.org/10.5194/tc-6-211-2012, 2012. a
Weertman, J.: On the Sliding of Glaciers, J. Glaciol., 3, 33–38,
https://doi.org/10.3189/S0022143000024709, 1957. a
Williams, J. J., Gourmelen, N., and Nienow, P.: Dynamic response of the
Greenland ice sheet to recent cooling, Sci. Rep.-UK, 10, 1647,
https://doi.org/10.1038/s41598-020-58355-2, 2020. a
Williams, J. J., Gourmelen, N., and Nienow, P.: Complex multi-decadal ice
dynamical change inland of marine-terminating glaciers on the Greenland Ice
Sheet, J. Glaciol., 67, 833–846, https://doi.org/10.1017/jog.2021.31, 2021.
a, b
Willis, M. J., Zheng, W., Durkin, W. J., Pritchard, M. E., Ramage, J. M.,
Dowdeswell, J. A., Benham, T. J., Bassford, R. P., Stearns, L. A., Glazovsky,
A. F., Macheret, Y. Y., and Porter, C. C.: Massive destabilization of an
Arctic ice cap, Earth Planet. Sc. Lett., 502, 146–155,
https://doi.org/10.1016/j.epsl.2018.08.049, 2018. a, b, c, d
Wood, M.,
Rignot, E.,
Bjørk, A.,
van den Broeke, M.,
Fenty, I.,
Menemenlis, D.,
Morlighem, M.,
Mouginot, J.,
Noël, B.,
Scheuchl, B.,
Willis, J.,
Zhang, H.,
An, L.,
Cai, C.,
Kane, E.,
Millan, R.,
and Velicogna, I.: Greenland Marine-Terminating Glacier Retreat Data, Dryad [data set], https://doi.org/10.7280/D1667W, 2020. a
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai,
C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7,
1–11, https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d, e
Zheng, W.: whyjz/pejzero: Pejzero v0.2 (v0.2), Zenodo [code/data], https://doi.org/10.5281/zenodo.6256963, 2022. a
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002. a
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces...