Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the effect of submarine iceberg melting on glacier-adjacent water properties
Benjamin Joseph Davison
CORRESPONDING AUTHOR
Department of Geography and Sustainable Development, University of St
Andrews, St Andrews, UK
School of Earth and Environment, University of Leeds, Leeds, UK
Tom Cowton
Department of Geography and Sustainable Development, University of St
Andrews, St Andrews, UK
Andrew Sole
Department of Geography, University of Sheffield, Sheffield, UK
Finlo Cottier
Scottish Association for Marine Science, Scottish Marine Institute,
Oban, UK
Department of Arctic and Marine Biology, UiT The Arctic University of
Norway, Tromsø, Norway
Pete Nienow
School of Geosciences, University of Edinburgh, Edinburgh, UK
Related authors
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025, https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary
Short summary
Grounding line discharge is a measure of the amount of ice entering the ocean from an ice mass. This paper describes a dataset of grounding line discharge for the Antarctic Ice Sheet and each of its glaciers. The dataset shows that Antarctic Ice Sheet grounding line discharge has increased since 1996.
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025, https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith, and Kohler region of West Antarctica (2005–2022). We found substantial speed-up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10 %, due to the redirection of ice flow into its rapidly thinning neighbour. This process of “ice piracy” has not previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304, https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
Short summary
To support generalized automated monitoring and modeling of Greenland’s outlet glaciers, this study presents a benchmark dataset of over 12,000 manually delineated calving front positions from 2002 to 2021. With high spatial accuracy and wide coverage, it enables evaluation of automated detection methods, improves model boundary conditions, and supports long-term studies of glacier change and sea-level rise.
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025, https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary
Short summary
Grounding line discharge is a measure of the amount of ice entering the ocean from an ice mass. This paper describes a dataset of grounding line discharge for the Antarctic Ice Sheet and each of its glaciers. The dataset shows that Antarctic Ice Sheet grounding line discharge has increased since 1996.
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025, https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith, and Kohler region of West Antarctica (2005–2022). We found substantial speed-up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10 %, due to the redirection of ice flow into its rapidly thinning neighbour. This process of “ice piracy” has not previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Donald Alexander Slater, Eleanor Johnstone, Martim Mas e Braga, Neil Fraser, Tom Cowton, and Mark Inall
EGUsphere, https://doi.org/10.5194/egusphere-2024-3934, https://doi.org/10.5194/egusphere-2024-3934, 2025
Short summary
Short summary
Glacial fjords connect ice sheets to the ocean, controlling heat delivery to glaciers, which impacts ice sheet melt, and freshwater discharge to the ocean, affecting ocean circulation. However, their dynamics are not captured in large-scale climate models. We designed a simplified, computationally efficient model – FjordRPM – which accurately captures key fjord processes. It has direct applications for improving projections of ice melt, ocean circulation and sea-level rise.
Lokesh Jain, Donald Slater, and Peter Nienow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4081, https://doi.org/10.5194/egusphere-2024-4081, 2025
Short summary
Short summary
Ice mélange is a mixture of icebergs and sea ice which floats in front of Greenland’s largest glaciers. The presence of an ice mélange can have a significant impact on a glacier and its fjord, but the melting of an ice mélange by the ocean is currently poorly understood. We used computer simulations to develop an equation which describes how ice mélange melts under different environmental conditions.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Thomas Slater, Isobel R. Lawrence, Inès N. Otosaka, Andrew Shepherd, Noel Gourmelen, Livia Jakob, Paul Tepes, Lin Gilbert, and Peter Nienow
The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021, https://doi.org/10.5194/tc-15-233-2021, 2021
Short summary
Short summary
Satellite observations are the best method for tracking ice loss, because the cryosphere is vast and remote. Using these, and some numerical models, we show that Earth has lost 28 trillion tonnes (Tt) of ice since 1994 from Arctic sea ice (7.6 Tt), ice shelves (6.5 Tt), mountain glaciers (6.1 Tt), the Greenland (3.8 Tt) and Antarctic ice sheets (2.5 Tt), and Antarctic sea ice (0.9 Tt). It has taken just 3.2 % of the excess energy Earth has absorbed due to climate warming to cause this ice loss.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Cited articles
Amundson, J. M., Kienholz, C., Hager, A. O., Jackson, R. H., Motyka, R. J.,
Nash, J. D., and Sutherland, D. A.: Formation, flow and break-up of ephemeral
ice mélange at LeConte Glacier and Bay, Alaska, J. Glaciol., 66,
577–590, https://doi.org/10.1017/jog.2020.29, 2020.
Barker, A., Sayed, M., and Carrieres, T.: Determination of Iceberg Draft, Mass And Cross-Sectional Areas, paper presented at the The Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, May 2004.
Beaird, N., Straneo, F., and Jenkins, W.: Characteristics of meltwater export
from Jakobshavn Isbræ and Ilulissat Icefjord, Ann. Glaciol., 58,
107–117, https://doi.org/10.1017/aog.2017.19, 2017.
Beaird, N. L., Straneo, F., and Jenkins, W.: Export of Strongly Diluted
Greenland Meltwater From a Major Glacial Fjord, Geophys. Res. Lett., 45,
4163–4170, https://doi.org/10.1029/2018GL077000, 2018.
Benn, D. I., Aström, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S.,
Hulton, N. R. J., and Luckman, A.: Melt-under-cutting and buoyancy-driven
calving from tidewater glaciers: New insights from discrete element and
continuum model simulations, J. Glaciol., 63, 691–702,
https://doi.org/10.1017/jog.2017.41, 2017.
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling the dynamics and thermodynamics of icebergs, Cold Reg. Sci. Technol., 26, 113–135, https://doi.org/10.1016/S0165-232X(97)00012-8, 1997.
Campin, J.-M., Heimbach, P., Losch, M., Forget, G., edhill3, Adcroft, A., amolod, Menemenlis, D., dfer22, Hill, C., Jahn, O., Scott, J., stephdut, Mazloff, M., Fox-Kemper, B., antnguyen13, Doddridge, E., Fenty, I., Bates, M., Eichmann, A., Smith, T., Martin, T., Lauderdale, J., Abernathey, R., samarkhatiwala, hongandyan, Deremble, B., dngoldberg, Bourgault, P.,Dussin, R.: MITgcm/MITgcm: checkpoint67z (Version checkpoint67z), Zenodo, https://doi.org/10.5281/zenodo.4968496, 2021.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, Y., and Van Den Broeke, M. R.: The impact of glacier geometry
on meltwater plume structure and submarine melt in Greenland fjords,
Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170, 2016.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Niewnow, P.: Modeling the impact
of glacial runoff on fjord circulation and submarine melt rate using a new
subgrid-scale parameterisization for glacial plumes, J. Geophys. Res.-Ocean., 120, 1–17, https://doi.org/10.1002/2014JC010324, 2015.
Cowton, T., Sole, A., Nienow, P., Slater, D., Wilton, D., and Hanna, E.:
Controls on the transport of oceanic heat to Kangerdlugssuaq Glacier, East
Greenland, J. Glaciol., 62, 1–14, https://doi.org/10.1017/jog.2016.117, 2016.
Davison, B.: Iceberg melting substantially modifies oceanic heat flux towards a major Greenlandic tidewater glacier – data and code, Zenodo [data set], https://doi.org/10.5281/zenodo.3979647, 2020.
Davison, B. J., Cowton, T. R., Cottier, F. R., and Sole, A. J.: Iceberg
melting substantially modifies oceanic heat flux towards a major Greenlandic
tidewater glacier, Nat. Commun., 11, 1–13,
https://doi.org/10.1038/s41467-020-19805-7, 2020.
De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., and Navarro, F.: Surface emergence of glacial plumes determined by fjord stratification, The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020, 2020.
Dowdeswell, J. A., Whittington, R. J., and Hodgkins, R.: The sizes,
frequencies, and freeboards of East Greenland icebergs observed using ship
radar and sextant, J. Geophys. Res., 97, 3515, https://doi.org/10.1029/91JC02821,
1992.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi,
H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C.
M., Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H.,
Payne, A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T.,
Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov,
R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J.,
Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K.,
Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J.,
Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T.,
Kraaijenbrink, P., Le clec'h, S., Lee, V., Leguy, G. R., Little, C. M.,
Lowry, D. P., Malles, J. H., Martin, D. F., Maussion, F., Morlighem, M.,
O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A.,
Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer,
C., Schlegel, N. J., Shannon, S., Smith, R. S., Straneo, F., Sun, S.,
Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke,
M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T. and Zwinger, T.:
Projected land ice contributions to twenty-first-century sea level rise,
Nature, 593, 74–82, https://doi.org/10.1038/s41586-021-03302-y, 2021.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. J., van Angelen, J. H., and
Van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Enderlin, E. M., Hamilton, G. S., Straneo, F., and Sutherland, D. A.: Iceberg
meltwater fluxes dominate the freshwater budget in Greenland's
iceberg-congested glacial fjords, Geophys. Res. Lett., 43,
11287–11294, https://doi.org/10.1002/2016GL070718, 2016.
Enderlin, E. M., Carrigan, C. J., Kochtitzky, W. H., Cuadros, A., Moon, T., and Hamilton, G. S.: Greenland iceberg melt variability from high-resolution satellite observations, The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, 2018.
Fenty, I., Willis, J., Khazendar, A., Dinardo, S., Forsberg, R., Fukumori,
I., Holland, D., Jakobsson, M., Moller, D., Morison, J., Münchow, A.,
Rignot, E., Schodlok, M., Thompson, A., Tinto, K., Rutherford, M., and
Trenholm, N.: Oceans Melting Greenland: Early Results from NASA's Ocean-Ice
Mission in Greenland, Oceanography, 29, 72–83,
https://doi.org/10.5670/oceanog.2016.100, 2016.
Fraser, N. J. and Inall, M. E.: Influence of Barrier Wind Forcing on Heat
Delivery Toward the Greenland Ice Sheet, J. Geophys. Res.-Ocean., 123,
2513–2538, https://doi.org/10.1002/2017JC013464, 2018.
Gade, H. G.: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs, J. Phys. Oceanogr., 9, 189–198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2, 1979.
Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje,
J.: Oceanic Boundary Conditions for Jakobshavn Glacier: Part I. Variability
and Renewal of Ilulissat Icefjord Waters, 2001–2014, J. Phys. Oceanogr., 45, 3–32,
https://doi.org/10.1175/JPO-D-14-0044.1, 2015.
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020.
Hellmer, H. and Olbers, D.: A two-dimensional model for the thermohalin
circulation under an ice shelf, Antarct. Sci., 1, 325–336, https://doi.org/10.1017/S0954102089000490,
1989.
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean
Interactions at the Base of an Ice Shelf, J. Phys. Oceanogr., 29,
1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999.
Inall, M. E., Murray, T., Cottier, F. R., Scharrer, K., and Boyd, T. J.:
Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland
ice sheet, J. Geophys. Res.-Ocean., 119, 631–645, https://doi.org/10.1002/2013JC009295.
2014.
Jackson, R. H. and Straneo, F.: Heat, salt, and freshwater budgets for a
glacial fjord in Greenland, J. Phys. Oceanogr., 0, 2735–2768,
https://doi.org/10.1175/JPO-D-15-0134.1, 2016.
Jackson, R. H., Straneo, F., and Sutherland, D. A.: Externally forced
fluctuations in ocean temperature at Greenland glaciers in non-summer
months, Nat. Geosci., 7, 1–6, https://doi.org/10.1038/ngeo2186, 2014.
Jackson, R. H., Shroyer, E. L., Nash, J. D., Sutherland, D. A., Carroll, D.,
Fried, M. J., Catania, G. A., Bartholomaus, T. C., and Stearns, L. A.:
Near-glacier surveying of a subglacial discharge plume: Implications for
plume parameterizations, Geophys. Res. Lett., 44, 6886–6894,
https://doi.org/10.1002/2017GL073602, 2017.
Jackson, R. H., Lentz, S. J., and Straneo, F.: The dynamics of shelf forcing
in Greenlandic fjords, J. Phys. Oceanogr., 48, 2799–2827,
https://doi.org/10.1175/JPO-D-18-0057.1, 2018.
Jackson, R. H., Nash, J. D., Kienholz, C., Sutherland, D. A., Amundson, J.
M., Motyka, R. J., Winters, D., Skyllingstad, E., and Pettit, E. C.:
Meltwater Intrusions Reveal Mechanisms for Rapid Submarine Melt at a
Tidewater Glacier, Geophys. Res. Lett., 47, e2019GL085335, https://doi.org/10.1029/2019GL085335,
2020.
Jakobsson, M., Mayer, L. A., Nilsson, J., Stranne, C., Calder, B., O'Regan,
M., Farrell, J. W., Cronin, T. M., Brüchert, V., Chawarski, J.,
Eriksson, B., Fredriksson, J., Gemery, L., Glueder, A., Holmes, F. A.,
Jerram, K., Kirchner, N., Mix, A., Muchowski, J., Prakash, A., Reilly, B.,
Thornton, B., Ulfsbo, A., Weidner, E., Åkesson, H., Handl, T.,
Ståhl, E., Boze, L.-G., Reed, S., West, G., and Padman, J.: Ryder Glacier
in northwest Greenland is shielded from warm Atlantic water by a bathymetric
sill, Commun. Earth Environ., 1, 1–10, https://doi.org/10.1038/s43247-020-00043-0,
2020.
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O'Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat.
Geosci., 7, 593–596, https://doi.org/10.1038/ngeo2204, 2014.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice
Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Khan, S. A., Bjørk, A. A., Bamber, J. L., Morlighem, M., Bevis, M.,
Kjær, K. H., Mouginot, J., Løkkegaard, A., Holland, D. M.,
Aschwanden, A., Zhang, B., Helm, V., Korsgaard, N. J., Colgan, W., Larsen,
N. K., Liu, L., Hansen, K., Barletta, V., Dahl-Jensen, T. S.,
Søndergaard, A. S., Csatho, B. M., Sasgen, I., Box, J., and Schenk, T.:
Centennial response of Greenland's three largest outlet glaciers, Nat.
Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-19580-5, 2020.
Kimura, S., Holland, P. R., Jenkins, A., and Piggott, M.: The effect of
meltwater plumes on the melting of a vertical glacier face, J. Phys.
Oceanogr., 44, 3099–3117, https://doi.org/10.1175/JPO-D-13-0219.1, 2014.
Luthi, M., Funk, M., Iken, A., Gogineni, S., and Truffer, M.: Mechanisms of
fast flow in Jakobshavns Isbræ, Greenland, Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock, J. Glaciol., 48, 369–385,
https://doi.org/10.3189/172756502781831322, 2002.
Ma, Y. and Bassis, J. N.: The Effect of Submarine Melting on Calving From
Marine Terminating Glaciers, J. Geophys. Res.-Earth Surf., 124, 334–346,
https://doi.org/10.1029/2018JF004820, 2019.
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.: Greenland liquid water discharge from 1958 through 2019, Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, 2020a.
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through March 2020, Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, 2020b.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753, https://doi.org/10.1029/96JC02775, 1997a.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733, https://doi.org/10.1029/96JC02776, 1997b.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., https://www.ipcc.ch/srocc/ (last access: 6 April 2022), 2019.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2017.
Mortensen, J., Bendtsen, J., Lennert, K., and Rysgaard, S.: Seasonal
variability of the circulation system in a west Greenland tidewater outlet
glacier fjord, Godthåbsfjord (64∘ N), J. Geophys. Res.-Earth
Surf., 119, 2591–2603, https://doi.org/10.1002/2014JF003267, 2014.
Mortensen, J., Rysgaard, S., Bendtsen, J., Lennert, K., Kanzow, T., Lund,
H., and Meire, L.: Subglacial discharge and its down-fjord transformation in
West Greenland with an ice melange, J. Geophys. Res.-Oceans, 125, e2020JC016301,
https://doi.org/10.1029/2020JC016301, 2020.
Moyer, A. N., Sutherland, D. A., Nienow, P. W., and Sole, A. J.: Seasonal
Variations in Iceberg Freshwater Flux in Sermilik Fjord, Southeast Greenland
From Sentinel-2 Imagery, Geophys. Res. Lett., 46, 8903–8912,
https://doi.org/10.1029/2019GL082309, 2019.
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., and van den Broeke, M. R.: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015), The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, 2016.
O'Leary, M. and Christoffersen, P.: Calving on tidewater glaciers amplified by submarine frontal melting, The Cryosphere, 7, 119–128, https://doi.org/10.5194/tc-7-119-2013, 2013.
Rezvanbehbahani, S., Stearns, L. A., Keramati, R., Shankar, S., and van der
Veen, C. J.: Significant contribution of small icebergs to the freshwater
budget in Greenland fjords, Commun. Earth Environ., 1, 1–7,
https://doi.org/10.1038/s43247-020-00032-3, 2020.
Schaffer, J., Kanzow, T., von Appen, W.-J., von Albedyll, L., Arndt, J. E.,
and Roberts, D. H.: Bathymetry constrains ocean heat supply to Greenland's
largest glacier tongue, Nat. Geosci., 13, 227–231, https://doi.org/10.1038/s41561-019-0529-x 2020.
Sciascia, R., Straneo, F., Cenedese, C., and Heimbach, P.: Seasonal
variability of submarine melt rate and circulation in an East Greenland
fjord, J. Geophys. Res.-Ocean., 118, 2492–2506, https://doi.org/10.1002/jgrc.20142,
2013.
Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N., and Sole, A.
J.: Effect of near-terminus subglacial hydrology on tidewater glacier
submarine melt rates, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2014GL062494, 2015.
Slater, D. A., Goldberg, D. N., Nienow, P. W., and Cowton, T. R.: Scalings
for Submarine Melting at Tidewater Glaciers from Buoyant Plume Theory, J.
Phys. Oceanogr., 46, 1839–1855, https://doi.org/10.1175/JPO-D-15-0132.1, 2016.
Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W.,
and Nienow, P. W.: Localized Plumes Drive Front-Wide Ocean Melting of A
Greenlandic Tidewater Glacier, Geophys. Res. Lett., 45, 12350–12358,
https://doi.org/10.1029/2018GL080763, 2018.
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J.: Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, 2019.
Slater, D. A., Felikson, D., Straneo, F., Goelzer, H., Little, C. M., Morlighem, M., Fettweis, X., and Nowicki, S.: Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution, The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, 2020.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation
of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/ngeo764, 2010.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C.,
Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial runoff
on the circulation near Helheim Glacier, Nat. Geosci., 4, 322–327,
https://doi.org/10.1038/ngeo1109, 2011.
Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G. S.,
Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean
waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012.
Sulak, D. J., Sutherland, D. A., Enderlin, E. M., Stearns, L. A., and
Hamilton, G. S.: Iceberg properties and distributions in three Greenlandic
fjords using satellite imagery, Ann. Glaciol., 58, 1–15,
https://doi.org/10.1017/aog.2017.5, 2017.
Sutherland, D., Straneo, F., and Pickart, R. S.: Characteristics and dynamics
of two major greenland glacial fjords, J. Geophys. Res.-Earth Surf., 119,
2121–2128, https://doi.org/10.1002/2013JC009786, 2014.
Sutherland, D. A. and Pickart, R. S.: The East Greenland Coastal Current:
Structure, variability, and forcing, Prog. Oceanogr., 78, 58–77,
https://doi.org/10.1016/j.pocean.2007.09.006, 2008.
Sutherland, D. A. and Straneo, F.: Estimating ocean heat transports and
submarine melt rates in sermilik fjord, greenland, using lowered acoustic
doppler current profiler (LADCP) velocity profiles, Ann. Glaciol., 53,
50–58, https://doi.org/10.3189/2012AoG60A050, 2012.
Sutherland, D. A., Jackson, R. H., Kienholz, C., Amundson, J. M., Dryer, W.
P., Duncan, D., Eidam, E. F., Motyka, R. J., and Nash, J. D.: Direct
observations of submarine melt and subsurface geometry at a tidewater
glacier, Science, 365, 369–374, https://doi.org/10.1126/science.aax3528,
2019.
Todd, J. and Christoffersen, P.: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland, The Cryosphere, 8, 2353–2365, https://doi.org/10.5194/tc-8-2353-2014, 2014.
Xie, S., Dixon, T. H., Holland, D. M., Voytenko, D., and Vaňková, I.:
Rapid iceberg calving following removal of tightly packed pro-glacial
mélange, Nat. Commun., 10, 3250, https://doi.org/10.1038/s41467-019-10908-4, 2019.
Xu, Y., Rignot, E., Menemenlis, D., and Koppes, M.: Numerical experiments on
subaqueous melting of Greenland tidewater glaciers in response to ocean
warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234,
https://doi.org/10.3189/2012AoG60A139, 2012.
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous
melting of Store Glacier, west Greenland from three-dimensional,
high-resolution numerical modeling and ocean observations, Geophys. Res.
Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013.
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean...