Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microstructure, micro-inclusions, and mineralogy along the EGRIP ice core – Part 1: Localisation of inclusions and deformation patterns
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Jan Eichler
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Maria Hörhold
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Tobias Erhardt
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Camilla Jensen
Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Ilka Weikusat
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Department of Geosciences, Eberhard Karls University, Tübingen, Germany
Related authors
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025, https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. Through use of a modelling framework, we demonstrate that one-dimensional signals can be significantly affected by this association, meaning high-resolution measurements must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Pascal Bohleber, Nicolas Stoll, Piers Larkman, Rachael H. Rhodes, and David Clases
EGUsphere, https://doi.org/10.5194/egusphere-2025-355, https://doi.org/10.5194/egusphere-2025-355, 2025
Short summary
Short summary
To avoid misinterpretation of impurity signals in ice cores, post-depositional changes need to be identified. Peak broadening with depth observed especially for S was previously related to diffusion in ice veins, but the exact physical mechanisms remain unclear. Our two-dimensional impurity maps by laser ablation inductively coupled plasma mass spectrometry were extended for the first time to S and Cl and support a view on diffusion not only through veins but also along grain boundaries.
Nicolas Angelo Stoll, David Clases, Raquel Gonzalez de Vega, Matthias Elinkmann, Piers Michael Larkman, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2025-61, https://doi.org/10.5194/egusphere-2025-61, 2025
Short summary
Short summary
We analyse nine samples from the EGRIP ice core, Greenland, using an underexplored method: single particle time of flight analysis. For the first time, we investigated thousands of particles from different climatic stages while applying a new approach to estimate particle sizes based on previous measurements. We characterise particles and provide new insights on trace elements in the Greenland Ice Sheet. This approach has an enormous potential for analysing million-year-old ice from Antarctica.
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Nicolas Stoll, Matthias Wietz, Stephan Juricke, Franziska Pausch, Corina Peter, Miriam Seifert, Jana C. Massing, Moritz Zeising, Rebecca A. McPherson, Melissa Käß, and Björn Suckow
Polarforschung, 91, 31–43, https://doi.org/10.5194/polf-91-31-2023, https://doi.org/10.5194/polf-91-31-2023, 2023
Short summary
Short summary
Global crises, such as climate change and the COVID-19 pandemic, show the importance of communicating science to the public. We introduce the YouTube channel "Wissenschaft fürs Wohnzimmer", which livestreams presentations on climate-related topics weekly and is accessible to all. The project encourages interaction between scientists and the public and has been running successfully for over 2 years. We present the concept, what we have learnt, and the challenges after 100 streamed episodes.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Iris Arndt, Jonathan Erez, David Evans, Tobias Erhardt, Adam Levi, and Wolfgang Müller
EGUsphere, https://doi.org/10.5194/egusphere-2025-3479, https://doi.org/10.5194/egusphere-2025-3479, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explores daily geochemical variations in giant clam (Tridacna) shells from controlled, isotopically-labelled day-night growth experiments. Results show five times higher daytime calcification rates. Light availability and metabolic activity significantly influence elemental incorporation mechanisms. The findings enhance our understanding of clam geochemistry and growth dynamics, offering valuable insights for studies on past environmental changes.
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025, https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. Through use of a modelling framework, we demonstrate that one-dimensional signals can be significantly affected by this association, meaning high-resolution measurements must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Florian Painer, Sepp Kipfstuhl, Martyn Drury, Tsutomu Uchida, Johannes Freitag, and Ilka Weikusat
EGUsphere, https://doi.org/10.5194/egusphere-2025-633, https://doi.org/10.5194/egusphere-2025-633, 2025
Short summary
Short summary
Air clathrate hydrates trap ancient air in the deeper part of ice sheets. We use digital microscopy and automated image analysis to investigate the evolution of number, size and shape of air clathrate hydrates from 1250 m depth to the bottom of the ice sheet. We confirm the previously found relation of changes in number and size with past climate and find a connection of their shape to changes in ice deformation. The results will help to better understand air clathrate hydrates in deep ice.
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
The Cryosphere, 19, 1067–1083, https://doi.org/10.5194/tc-19-1067-2025, https://doi.org/10.5194/tc-19-1067-2025, 2025
Short summary
Short summary
Recent studies showed that a large number of independent vertical profiles allow for inferring a common local climate signal from the stacked stable water isotope record. Through investigating instrumental limitation and the effect of percolation of such porous samples, this study assesses the continuous flow analysis (CFA) technique in order to analyze the significant number of snow surface profiles within a reasonable time and with high quality.
Pascal Bohleber, Nicolas Stoll, Piers Larkman, Rachael H. Rhodes, and David Clases
EGUsphere, https://doi.org/10.5194/egusphere-2025-355, https://doi.org/10.5194/egusphere-2025-355, 2025
Short summary
Short summary
To avoid misinterpretation of impurity signals in ice cores, post-depositional changes need to be identified. Peak broadening with depth observed especially for S was previously related to diffusion in ice veins, but the exact physical mechanisms remain unclear. Our two-dimensional impurity maps by laser ablation inductively coupled plasma mass spectrometry were extended for the first time to S and Cl and support a view on diffusion not only through veins but also along grain boundaries.
Nicolas Angelo Stoll, David Clases, Raquel Gonzalez de Vega, Matthias Elinkmann, Piers Michael Larkman, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2025-61, https://doi.org/10.5194/egusphere-2025-61, 2025
Short summary
Short summary
We analyse nine samples from the EGRIP ice core, Greenland, using an underexplored method: single particle time of flight analysis. For the first time, we investigated thousands of particles from different climatic stages while applying a new approach to estimate particle sizes based on previous measurements. We characterise particles and provide new insights on trace elements in the Greenland Ice Sheet. This approach has an enormous potential for analysing million-year-old ice from Antarctica.
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
Jakob Schwander, Thomas F. Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
The Cryosphere, 18, 5613–5617, https://doi.org/10.5194/tc-18-5613-2024, https://doi.org/10.5194/tc-18-5613-2024, 2024
Short summary
Short summary
The RADIX (Rapid Access Drilling and Ice eXtraction) optical dust logger is part of the exploratory 20 mm drilling system at the University of Bern and is inserted into the hole after drilling. Temperature and attitude sensors were successfully tested but not the dust sensor, as no RADIX hole reached the required bubble-free ice. In 2023, we tested the logger with an adapter for the deep borehole of the East Greenland Ice-core Project and obtained a good Late Glacial–Early Holocene dust record.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Nicolas Stoll, Matthias Wietz, Stephan Juricke, Franziska Pausch, Corina Peter, Miriam Seifert, Jana C. Massing, Moritz Zeising, Rebecca A. McPherson, Melissa Käß, and Björn Suckow
Polarforschung, 91, 31–43, https://doi.org/10.5194/polf-91-31-2023, https://doi.org/10.5194/polf-91-31-2023, 2023
Short summary
Short summary
Global crises, such as climate change and the COVID-19 pandemic, show the importance of communicating science to the public. We introduce the YouTube channel "Wissenschaft fürs Wohnzimmer", which livestreams presentations on climate-related topics weekly and is accessible to all. The project encourages interaction between scientists and the public and has been running successfully for over 2 years. We present the concept, what we have learnt, and the challenges after 100 streamed episodes.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Romilly Harris Stuart, Anne-Katrine Faber, Sonja Wahl, Maria Hörhold, Sepp Kipfstuhl, Kristian Vasskog, Melanie Behrens, Alexandra M. Zuhr, and Hans Christian Steen-Larsen
The Cryosphere, 17, 1185–1204, https://doi.org/10.5194/tc-17-1185-2023, https://doi.org/10.5194/tc-17-1185-2023, 2023
Short summary
Short summary
This empirical study uses continuous daily measurements from the Greenland Ice Sheet to document changes in surface snow properties. Consistent changes in snow isotopic composition are observed in the absence of deposition due to surface processes, indicating the isotopic signal of deposited precipitation is not always preserved. Our observations have potential implications for the interpretation of water isotopes in ice cores – historically assumed to reflect isotopic composition at deposition.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021, https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Short summary
Water isotope records in Greenland and Antarctic ice cores are a valuable proxy for paleoclimate reconstruction and are traditionally thought to primarily reflect precipitation input. However,
post-depositional processes are hypothesized to contribute to the isotope climate signal. In this study we use laboratory experiments, field experiments, and modeling to show that sublimation and vapor–snow isotope exchange can rapidly influence the isotopic composition of the snowpack.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Nathalie Van der Putten, Florian Adolphi, Anette Mellström, Jesper Sjolte, Cyriel Verbruggen, Jan-Berend Stuut, Tobias Erhardt, Yves Frenot, and Raimund Muscheler
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-69, https://doi.org/10.5194/cp-2021-69, 2021
Manuscript not accepted for further review
Short summary
Short summary
In recent decades, Southern Hemisphere westerlies (SHW) moved equator-ward during periods of low solar activity leading to increased winds/precipitation at 46° S, Indian Ocean. We present a terrestrial SHW proxy-record and find stronger SHW influence at Crozet, shortly after 2.8 ka BP, synchronous with a climate shift in the Northern Hemisphere, attributed to a major decline in solar activity. The bipolar response to solar forcing is supported by a climate model forced by solar irradiance only.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Jann Schrod, Dominik Kleinhenz, Maria Hörhold, Tobias Erhardt, Sarah Richter, Frank Wilhelms, Hubertus Fischer, Martin Ebert, Birthe Twarloh, Damiano Della Lunga, Camilla M. Jensen, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 12459–12482, https://doi.org/10.5194/acp-20-12459-2020, https://doi.org/10.5194/acp-20-12459-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) concentrations of the last 6 centuries are presented from an ice core in Greenland. The data are accompanied by physical and chemical aerosol data. INPs are correlated to the dust signal from the ice core and seem to follow the annual input of mineral dust. We find no clear trend in the INP concentration. However, modern-day concentrations are higher and more variable than the concentrations of the past. This might have significant atmospheric implications.
Cited articles
Ahmad, S., Ohtomo, M., and Whitworth, R. W.: Observation of a dislocation
source in ice by synchrotron radiation topography, Nature, 319, 659–660,
https://doi.org/10.1038/319659a0, 1986. a
Alley, R., Perepezko, J., and Bentley, C. R.: Grain Growth in Polar Ice: I.
Theory, J. Glaciol., 32, 415–424,
https://doi.org/10.3189/S0022143000012132, 1986a. a, b, c
Alley, R. B.: Fabrics in polar ice sheets: Development and prediction,
Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. a
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T.:
Deformation of till beneath ice stream B, West Antarctica, Nature, 322, 57,
https://doi.org/10.1038/322057a0,
1986. a, b
Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.:
Water-pressure coupling of sliding and bed deformation: III. Application to
Ice Stream B, Antarctica, J. Glaciol., 35, 130–139, 1989. a
Ashby, M. F.: Boundary defects and the mechanism of particle movement through
crystals, Scripta Metall. Mater., 3, 843–848,
https://doi.org/10.1016/0036-9748(69)90192-6, 1969. a
Azuma, N., Miyakoshi, T., Yokoyama, S., and Takata, M.: Impeding effect of air
bubbles on normal grain growth of ice, J. Struct. Geol., 42,
184–193, https://doi.org/10.1016/j.jsg.2012.05.005, 2012. a, b, c
Baccolo, G., Cibin, G., Delmonte, B., Hampai, D., Marcelli, A., Stefano, E. D.,
Macis, S., and Maggi, V.: The Contribution of Synchrotron Light for the
Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary
Results from the Talos Dome Ice Core ( East Antarctica ), Condensed Matter,
3, 25, https://doi.org/10.3390/condmat3030025, 2018. a
Baker, I. and Cullen, D.: SEM/EDS observations of impurities in polar ice:
artifacts or not?, J. Glaciol., 49, 184–190, 2003. a
Barnes, P. R. F. and Wolff, E. W.: Distribution of soluble impurities in cold
glacial ice, J. Glaciol., 50, 311–324,
https://doi.org/10.3189/172756504781829918, 2004. a
Barnes, P. R. F., Mulvaney, R., Wolff, E. W., and Robinson, K.: A technique
for the examination of polar ice using the scaning electron microscope,
J. Microsc., 205, 118–124, 2002b. a
Barnes, P. R. F., Wolff, E. W., Mader, H. M., Udisti, R., Castellano, E., and
Röthlisberger, R.: Evolution of chemical peak shapes in the Dome C,
Antarctica, ice core, J. Geophys. Res., 108, 4126,
https://doi.org/10.1029/2002JD002538, 2003. a
Bayer-Giraldi, M., Sazaki, G., Nagashima, K., Kipfstuhl, S., Vorontsov, D. A.,
and Furukawa, Y.: Growth suppression of ice crystal basal face in the
presence of a moderate ice-binding protein does not confer hyperactivity,
P. Natl. Acad. Sci. USA, 115, 7479–7484,
https://doi.org/10.1073/pnas.1807461115, 2018. a
Bohleber, P., Roman, M., Šala, M., Delmonte, B., Stenni, B., and Barbante, C.: Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation, The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, 2021. a, b
Chauve, T., Montagnat, M., Piazolo, S., Journaux, B., Wheeler, J., Barou, F.,
Mainprice, D., and Tommasi, A.: Non-basal dislocations should be accounted
for in simulating ice mass flow, Earth Planet. Sc. Lett., 473,
247–255, https://doi.org/10.1016/j.epsl.2017.06.020, 2017. a
Cole-Dai, J., Budner, D. M., and Ferris, D. G.: High Speed, High Resolution,
and Continuous Chemical Analysis of Ice Cores Using a Melter and Ion
Chromatography, Environ. Sci. Technol., 40, 6764–6769,
https://doi.org/10.1021/es061188a, 2006. a
Cullen, D. and Baker, I.: Observation of Impurities in Ice, Microsc.
Res. Tech., 207, 198–207, 2001. a
Dahl-Jensen, D. and Gundestrup, N. S.: Constitutive properties of ice at Dye
3, Greenland, International Association of Hydrological Sciences
Publication, 31–43,
available at: http://hydrologie.org/redbooks/a170/iahs_170_0031.pdf (last access: 2 June 2021), 1987. a
Dahl-Jensen, D., Thorsteinsson, T., Alley, R., and Shoji, H.: Flow properties
of the ice from the Greenland Ice Core Project ice core: The reason for
folds?, J. Geophys. Res.-Oceans, 102, 26831–26840,
https://doi.org/10.1029/97JC01266, 1997. a, b
Dahl-Jensen, D., Albert, M. R., Aldahan, A., Azuma, N., Balslev-Clausen, D.,
Baumgartner, M., Berggren, A. M., Bigler, M., Binder, T., Blunier, T.,
Bourgeois, J. C., Brook, E. J., Buchardt, S. L., Buizert, C., Capron, E.,
Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I., Davies, S. M.,
Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. A., Fleet, L. G., Gfeller,
G., Gkinis, V., Gogineni, S., Goto-Azuma, K., Grinsted, A., Gudlaugsdottir,
H., Guillevic, M., Hansen, S. B., Hansson, M., Hirabayashi, M., Hong, S.,
Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk, T., Johnsen,
S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K., Keegan, K.,
Kettner, E., Kipfstuhl, S., Kjær, H. A., Koutnik, M., Kuramoto, T.,
Köhler, P., Laepple, T., Landais, A., Langen, P. L., Larsen, L. B.,
Leuenberger, D., Leuenberger, M., Leuschen, C., Li, J., Lipenkov, V.,
Martinerie, P., Maselli, O. J., Masson-Delmotte, V., McConnell, J. R.,
Miller, H., Mini, O., Miyamoto, A., Montagnat-Rentier, M., Mulvaney, R.,
Muscheler, R., Orsi, A. J., Paden, J., Panton, C., Pattyn, F., Petit, J. R.,
Pol, K., Popp, T., Possnert, G., Prié, F., Prokopiou, M., Quiquet, A.,
Rasmussen, S. O., Raynaud, D., Ren, J., Reutenauer, C., Ritz, C.,
Röckmann, T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D., Sapart,
C. J., Schilt, A., Schmidt, A. M., Schwander, J., Schüpbach, S.,
Seierstad, I., Severinghaus, J. P., Sheldon, S., Simonsen, S. B., Sjolte, J.,
Solgaard, A. M., Sowers, T., Sperlich, P., Steen-Larsen, H. C., Steffen, K.,
Steffensen, J. P., Steinhage, D., Stocker, T. F., Stowasser, C., Sturevik,
A. S., Sturges, W. T., Sveinbjörnsdottir, A., Svensson, A., Tison,
J. L., Uetake, J., Vallelonga, P., Van De Wal, R. S., Van Der Wel, G.,
Vaughn, B. H., Vinther, B., Waddington, E., Wegner, A., Weikusat, I., White,
J. W., Wilhelms, F., Winstrup, M., Witrant, E., Wolff, E. W., Xiao, C., and
Zheng, J.: Eemian interglacial reconstructed from a Greenland folded ice
core, Nature, 493, 489–494, https://doi.org/10.1038/nature11789, 2013. a
de Angelis, M., Morel-Fourcade, M.-C., Barnola, J.-M., Susini, J., and Duval,
P.: Brine micro-droplets and solid inclusions in accreted ice from Lake
Vostok (East Antarctica), Geophys. Res. Lett., 32, L12501,
https://doi.org/10.1029/2005GL022460, 2005. a
de Angelis, M., Tison, J. L., Morel-Fourcade, M. C., and Susini, J.:
Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in
situ processes involving acid-salt interactions, mineral dust, and organic
matter, Quaternary Sci. Rev., 78, 248–265,
https://doi.org/10.1016/j.quascirev.2013.08.012, 2013. a, b, c, d
Della Lunga, D., Müller, W., Rasmussen, S. O., and Svensson, A.:
Location of cation impurities in NGRIP deep ice revealed by cryo-cell
UV-laser-ablation ICPMS, J. Glaciol., 60, 970–988,
https://doi.org/10.3189/2014JoG13J199, 2014. a, b, c
Della Lunga, D., Müller, W., Rasmussen, S. O., Svensson, A., and Vallelonga, P.: Calibrated cryo-cell UV-LA-ICPMS elemental concentrations from the NGRIP ice core reveal abrupt, sub-annual variability in dust across the GI-21.2 interstadial period, The Cryosphere, 11, 1297–1309, https://doi.org/10.5194/tc-11-1297-2017, 2017. a
Drury, M. R. and Urai, J. L.: Deformation-related recrystalization processes,
Tectonophysics, 172, 235–253, 1990. a
Durand, G., Gagliardini, O., Thorsteinsson, T., Svensson, A., Kipfstuhl, S.,
and Dahl-Jensen, D.: Ice microstructure and fabric: an up-to-date approach
for measuring textures, J. Glaciol., 52, 619–630, 2006. a
Durand, G., Persson, A., Samyn, D., and Svensson, A.: Relation between
neighbouring grains in the upper part of the NorthGRIP ice core –
Implications for rotation recrystallization, Earth Planet. Sc.
Lett., 265, 666–671, https://doi.org/10.1016/j.epsl.2007.11.002, 2008. a
Eichler, J., Kleitz, I., Bayer-Giraldi, M., Jansen, D., Kipfstuhl, S., Shigeyama, W., Weikusat, C., and Weikusat, I.: Location and distribution of micro-inclusions in the EDML and NEEM ice cores using optical microscopy and in situ Raman spectroscopy, The Cryosphere, 11, 1075–1090, https://doi.org/10.5194/tc-11-1075-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l
Eichler, J., Weikusat, C., Wegner, A., Twarloh, B., Behrens, M., Fischer, H.,
Hörhold, M., Jansen, D., Kipfstuhl, S., Ruth, U., Wilhelms, F., and
Weikusat, I.: Impurity Analysis and Microstructure Along the Climatic
Transition From MIS 6 Into 5e in the EDML Ice Core Using Cryo-Raman
Microscopy, Front. Earth Sci., 7, 1–16,
https://doi.org/10.3389/feart.2019.00020, 2019. a, b, c, d, e, f, g
EPICA Community Members: Eight glacial cycles from an Antarctic ice core
EPICA community members, Nature, 429, 623–628, 2004. a
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.: High
Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central
Greenland, Science, 294, 2338–2342, https://doi.org/10.1126/science.1065370,
2001. a
Faria, S. H., Freitag, J., and Kipfstuhl, S.: Polar ice structure and the
integrity of ice-core paleoclimate records, Quaternary Sci. Rev., 29,
338–351, https://doi.org/10.1016/j.quascirev.2009.10.016, 2010. a, b, c, d
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part I: Highlights from ice core research, J. Struct. Geol.,
61, 2–20, https://doi.org/10.1016/j.jsg.2013.09.010, 2014a. a
Fenter, P., Teng, H., Geissbühler, P., Hanchar, J., Nagy, K., and
Sturchio, N.: Atomic-scale structure of the orthoclase (001)–water
interface measured with high-resolution X-ray reflectivity, Geochim.
Cosmochim. Ac., 64, 3663–3673, https://doi.org/10.1016/S0016-7037(00)00455-5, 2000. a
Fitzpatrick, J. J., Voigt, D. E., Fegyveresi, J. M., Stevens, N. T., Spencer,
M. K., Cole-Dai, J., Alley, R. B., Jardine, G. E., Cravens, E. D., Wilen,
L. A., Fudge, T., and Mcconnell, J. R.: Physical properties of the WAIS
Divide ice core, J. Glaciol., 60, 1181–1198,
https://doi.org/10.3189/2014JoG14J100, 2014. a
Frank, F. C. and Read, W. T.: Multiplication Processes for Slow Moving
Dislocations, Phys. Rev., 79, 722–723, https://doi.org/10.1103/PhysRev.79.722,
1950. a
Fujita, S., Hirabayashi, M., Goto-Azuma, K., Dallmayr, R., Satow, K., Zheng,
J., and Dahl-Jensen, D.: Densification of layered firn of the ice sheet at
NEEM, Greenland, J. Glaciol., 60, 905–921,
https://doi.org/10.3189/2014JoG14J006, 2014. a
Fukazawa, H., Sugiyama, K., Shinji, M., Narita, H., and Hondoh, T.: Acid ions
at triple junction of Antarctic ice observed by Raman scattering,
Geophys. Res. Lett., 25, 2845–2848, 1998. a
Glen, J. W.: The Effect of Hydrogen Disorder on Dislocation Movement and
Plastic Deformation of Ice, Physik der kondensierten Materie, 7, 43–51,
1968. a
Gow, A. J. and Williamson, T.: Volcanic ash in the Antarctic Ice Sheet and its
possible climatic implications, Earth Planet. Sc. Lett., 13,
210–218, 1971. a
Hörhold, M. W., Laepple, T., Freitag, J., Bigler, M., Fischer, H., and
Kipfstuhl, S.: On the impact of impurities on the densification of polar
firn, Earth Planet. Sci. Lett., 325–326, 93–99,
https://doi.org/10.1016/j.epsl.2011.12.022, 2012. a
Hudson Institute of Mineralogy: mindat.org,
available at: https://www.mindat.org/ (last access: 5 May 2021), 2021. a
Humphreys, F. and Hatherly, M.: Recrystallization and Related Annealing
Phenomena, Elsevier, https://doi.org/10.1016/B978-0-08-044164-1.X5000-2, 2004. a, b
Hvidberg, C. S., Grinsted, A., Dahl-Jensen, D., Khan, S. A., Kusk, A., Andersen, J. K., Neckel, N., Solgaard, A., Karlsson, N. B., Kjær, H. A., and Vallelonga, P.: Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS, The Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020, 2020. a, b
Jacka, T. and Li, J.: The steady-state crystal size of deforming ice, Ann. Glaciol., 20, 13–18, https://doi.org/10.1017/S0260305500016165, 1994. a
Jones, S. J. and Glen, J. W.: The effect of dissolved impurities on the
mechanical properties of ice crystals, Philos. Mag., 19, 13–24,
https://doi.org/10.1080/14786436908217758, 1969. a, b
Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., and Moon, T.: Greenland
flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 415–430, https://doi.org/10.3189/002214310792447734, 2010. a
Joughin, I., Smith, B. E., and Howat, I. M.: A complete map of Greenland ice
velocity derived from satellite data collected over 20 years, J. Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2017. a
Karato, S.-i., Toriumi, M., and Fujii, T.: Dynamic recrystallization of
olivine single crystals during high-temperature creep, Geophys. Res.
Lett., 7, 649–652, https://doi.org/10.1029/GL007i009p00649, 1980. a
Kaufmann, P. R., Federer, U., Hutterli, M. A., Bigler, M., Schüpbach, S.,
Ruth, U., Schmitt, J., and Stocker, T. F.: An Improved Continuous Flow
Analysis System for High-Resolution Field Measurements on Ice Cores,
Environ. Sci. Technol., 42, 8044–8050,
https://doi.org/10.1021/es8007722, 2008. a
Kuiper, E.-J. N., de Bresser, J. H. P., Drury, M. R., Eichler, J., Pennock, G. M., and Weikusat, I.: Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature, The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020, 2020a. a
Kuiper, E.-J. N., Weikusat, I., de Bresser, J. H. P., Jansen, D., Pennock, G. M., and Drury, M. R.: Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m, The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, 2020b. a, b
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: A review,
Rev. Geophys., 35, 219–243, https://doi.org/10.1029/96RG03527, 1997. a, b
Li, J., Jacka, T. H., and Morgan, V.: Crystal-size and microparticle record in
the ice core from Dome Summit South, Law Dome, East Antarctica, Ann. Glaciol., 27, 343–348, 1998. a
Lorius, C. J., Jouzel, C., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevitch,
Y. S., and Kotlyakov, V. M.: A 150 000 years climatic record from
Antarctica, Nature, 316, 591–596, 1985. a
Mader, H. M.: The thermal behaviour of the water-vein system in polyrystalline
ice, J. Glaciol., 38, 359–374, 1992. a
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd,
S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J. M.,
Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen,
J., Mikolajewicz, U., and Otto-Bliesner, B.: EPICA Dome C record of glacial
and interglacial intensities, Quaternary Sci. Rev., 29, 113–128,
https://doi.org/10.1016/j.quascirev.2009.09.030, 2010. a
McConnell, J. R., Lamorey, G. W., Lambert, S. W., and Taylor, K. C.:
Continuous Ice-Core Chemical Analyses Using Inductively Coupled Plasma Mass
Spectrometry, Environ. Sci. Technol., 36, 7–11,
https://doi.org/10.1021/es011088z, 2002. a
Minchew, B. M., Meyer, C. R., Robel, A. A., Gudmundsson, G. H., and Simons, M.:
Processes controlling the downstream evolution of ice rheology in glacier
shear margins: case study on Rutford Ice Stream, West Antarctica, J.
Glaciol., 64, 583–594, https://doi.org/10.1017/jog.2018.47, 2018. a
Minchew, B. M., Meyer, C. R., Pegler, S. S., Lipovsky, B. P., Rempel, A. W.,
Gudmundsson, G. H., and Iverson, N. R.: Comment on “Friction at the bed
does not control fast glacier flow”, Science, 363, eaau6055,
https://doi.org/10.1126/science.aau6055, 2019. a
Mojtabavi, S., Wilhelms, F., Cook, E., Davies, S. M., Sinnl, G., Skov Jensen, M., Dahl-Jensen, D., Svensson, A., Vinther, B. M., Kipfstuhl, S., Jones, G., Karlsson, N. B., Faria, S. H., Gkinis, V., Kjær, H. A., Erhardt, T., Berben, S. M. P., Nisancioglu, K. H., Koldtoft, I., and Rasmussen, S. O.: A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination, Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, 2020. a, b, c, d
Montagnat, M., Azuma, N., Dahl-Jensen, D., Eichler, J., Fujita, S., Gillet-Chaulet, F., Kipfstuhl, S., Samyn, D., Svensson, A., and Weikusat, I.: Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores, The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014, 2014. a, b, c
Montagnat, M., Löwe, H., Calonne, N., Schneebeli, M., Matzl, M., and
Jaggi, M.: On the Birth of Structural and Crystallographic Fabric Signals in
Polar Snow: A Case Study From the EastGRIP Snowpack, Front. Earth Sci., 8, 1–23, https://doi.org/10.3389/feart.2020.00365, 2020. a
Moser, D. E., Hörhold, M., Kipfstuhl, S., and Freitag, J.:
Microstructure of Snow and Its Link to Trace Elements and Isotopic
Composition at Kohnen Station, Dronning Maud Land, Antarctica, Front.
Earth Sci., 8, 23, https://doi.org/10.3389/feart.2020.00023, 2020. a
Nedelcu, A. F., Faria, S. H., and Kuhs, W. F.: Raman spectra of plate-like
inclusions in the EPICA-DML (Antarctica) ice core, J. Glaciol.,
55, 183–184, https://doi.org/10.3189/002214309788609010, 2009. a
Ng, F. S. L.: Pervasive diffusion of climate signals recorded in ice-vein ionic impurities, The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, 2021. a
Obbard, R. and Baker, I.: The microstructure of meteoric ice from Vostok ,
Antarctica, J. Glaciol., 53, 41–62, 2007. a
Ohno, H., Igarashi, M., and Hondoh, T.: Characteristics of salt inclusions in
polar ice from Dome Fuji, East Antarctica, Geophys. Res. Lett., 33,
L08501, https://doi.org/10.1029/2006GL025774, 2006. a, b
Ohno, H., Lipenkov, V. Y., and Hondoh, T.: Formation of air clathrate hydrates
in polar ice sheets: heterogeneous nucleation induced by micro-inclusions,
J. Glaciol., 56, 917–921, https://doi.org/10.3189/002214310794457317, 2010. a
Ohno, H., Iizuka, Y., Horikawa, S., Sakurai, T., Hondoh, T., and Motoyama, H.:
Potassium alum and aluminum sulfate micro-inclusions in polar ice from Dome
Fuji, East Antarctica, Polar Sci., 8, 1–9,
https://doi.org/10.1016/j.polar.2013.11.003, 2014. a, b
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, Springer-Verlag,
Berlin/Heidelberg, 2 edn., https://doi.org/10.1007/3-540-29359-0, 2005. a, b
Petit, J. R., Duval, P., and Lorius, C.: Long-term climatic changes indicated
by crystal growth in polar ice, Nature, 326, 62–64, 1987. a
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzmank, E., and Stievenard, M.: Climate and atmospheric history
of the past 420,000 years from the Vostok ice core, Antarctica The recent
completion of drilling at Vostok station in East, Nature, 399, 429–436,
1999. a
Piazolo, S., Montagnat, M., and Blackford, J. R.: Sub-structure
characterization of experimentally and naturally deformed ice using
cryo-EBSD, J. Microsc., 230, 509–519,
https://doi.org/10.1111/j.1365-2818.2008.02014.x, 2008. a
Poirier, J.-P.: Creep of Crystals, Cambridge University Press,
https://doi.org/10.1017/CBO9780511564451, 1985. a
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013. a
Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann,
E., and Skole, J.: Laser ablation inductively coupled plasma mass
spectrometry: a new tool for trace element analysis in ice cores, Fresenius'
J. Anal. Chem., 370, 629–636, https://doi.org/10.1007/s002160100853,
2001. a
Röthlisberger, R., Bigler, M., Hutterli, M., Sommer, S., Stauffer, B.,
Junghans, H. G., and Wagenbach, D.: Technique for continuous high-resolution
analysis of trace substances in firn and ice cores, Environ. Sci. Technol., 34, 338–342, https://doi.org/10.1021/es9907055, 2000. a
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record
of microparticle concentration and size distribution in the central Greenland
NGRIP ice core during the last glacial period, J. Geophys. Res.-Atmos., 108, 4098, https://doi.org/10.1029/2002JD002376, 2003. a
Rutter, E. H.: Experimental study of the influence of stress, temperature, and
strain on the dynamic recrystallization of Carrara marble, J. Geophys. Res.-Sol. Ea., 100, 24651–24663,
https://doi.org/10.1029/95JB02500, 1995. a
Sakurai, T., Ilzuka, Y., Horlkawa, S., Johnsen, S., Dahl-Jensen, D.,
Steffensen, J. P., and Hondoh, T.: Direct observation of salts as
micro-inclusions in the Greenland GRIP ice core, J. Glaciol., 55,
777–783, https://doi.org/10.3189/002214309790152483, 2009. a, b
Sakurai, T., Ohno, H., Genceli, F. E., Horikawa, S., Iizuka, Y., Uchida, T.,
and Hondoh, T.: Magnesium methanesulfonate salt found in the Dome Fuji
(Antarctica) ice core, J. Glaciol., 56, 837–842,
https://doi.org/10.3189/002214310794457335, 2010. a
Sakurai, T., Ohno, H., Horikawa, S., Iizuka, Y., Uchida, T., Hirakawa, K., and
Hondoh, T.: The chemical forms of water-soluble microparticles preserved in
the Antarctic ice sheet during Termination I, J. Glaciol., 57,
1027–1032, https://doi.org/10.3189/002214311798843403, 2011. a, b
Severi, M., Becagli, S., Frosini, D., Marconi, M., Traversi, R., and Udisti,
R.: A Novel Fast Ion Chromatographic Method for the Analysis of Fluoride in
Antarctic Snow and Ice, Environ. Sci. Technol., 48,
1795–1802, https://doi.org/10.1021/es404126z, 2014. a
Shigeyama, W., Nagatsuka, N., Homma, T., Takata, M., Goto-Azuma, K., Weikusat,
I., Drury, M. R., Kuiper, E. J. N., Mateiu, R. V., Azuma, N., Dahl-Jensen,
D., and Kipfstuhl, S.: Microstructural analysis of Greenland ice using a
cryogenic scanning electron microscope equipped with an electron backscatter
diffraction detector, B. Glaciol. Res., 37, 31–45,
https://doi.org/10.5331/BGR.19R01, 2019. a
Simonsen, M. F., Baccolo, G., Blunier, T., Borunda, A., Delmonte, B., Frei, R.,
Goldstein, S., Grinsted, A., Kjær, H. A., Sowers, T., Svensson, A.,
Vinther, B., Vladimirova, D., Winckler, G., Winstrup, M., and Vallelonga, P.:
East Greenland ice core dust record reveals timing of Greenland ice sheet
advance and retreat, Nat. Commun., 10,
https://doi.org/10.1038/s41467-019-12546-2, 2019. a
Spaulding, N. E., Sneed, S. B., Handley, M. J., Bohleber, P., Kurbatov, A. V.,
Pearce, N. J., Erhardt, T., and Mayewski, P. A.: A New Multielement Method
for LA-ICP-MS Data Acquisition from Glacier Ice Cores, Environ. Sci. Technol., 51, 13282–13287, https://doi.org/10.1021/acs.est.7b03950, 2017. a
Stearns, L. A. and van der Veen, C.: Response to Comment on “Friction at the
bed does not control fast glacier flow”, Science, 363, eaau8375,
https://doi.org/10.1126/science.aau8375, 2019. a
Steffensen, J. P.: The size distribution of microparticles from selected
segments of the Greenland Ice Core Project ice core representing different
climatic periods, J. Geophys. Res., 102, 755–2, 1997. a
Steinbach, F., Kuiper, E.-J. N., Eichler, J., Bons, P. D., Drury, M. R.,
Griera, A., Pennock, G. M., and Weikusat, I.: The Relevance of Grain
Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical
Models and Ice Core Microstructure Analysis, Front. Earth Sci., 5,
https://doi.org/10.3389/feart.2017.00066, 2017. a
Stillman, D. E., MacGregor, J. A., and Grimm, R. E.: The role of acids in
electrical conduction through ice, J. Geophys. Res.-Earth
Surf., 118, 1–16, https://doi.org/10.1029/2012JF002603, 2013. a
Stipp, M. and Tullis, J.: The recrystallized grain size piezometer for
quartz, Geophys. Res. Lett., 30, 2088, https://doi.org/10.1029/2003GL018444,
2003. a
Stoll, N., Hörhold, M., Erhardt, T., Eichler, J., Jensen, C., and Weikusat, I.: Microstructure, Micro-inclusions and Mineralogy along the EGRIP ice core – Part 2: Implications for paleo-mineralogy, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-190, in review, 2021b. a, b, c, d, e, f, g, h
Stoll, N., Weikusat, I., and Eichler, J.: Microstructure maps with indicated micro-inclusions and grain boundaries (GB) of eleven samples (138–1340) m from the EastGRIP ice core, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933045, 2021c. a
Svensson, A., Nielsen, S. W., Kipfstuhl, S., Johnsen, S. J., Steffensen, J. P.,
Bigler, M., Ruth, U., and Röthlisberger, R.: Visual stratigraphy of
the North Greenland Ice Core Project (NorthGRIP) ice core during the last
glacial period, J. Geophys. Res., 110, 1–11,
https://doi.org/10.1029/2004JD005134, 2005. a, b
Thorsteinsson, T., Kipfstuhl, J., and Miller, H.: Textures and fabrics in the
GRIP ice core, J. Geophys. Res.-Oceans, 102,
26583–26599, https://doi.org/10.1029/97JC00161, 1997. a, b
Treverrow, A., Budd, W. F., Jacka, T. H., and Warner, R. C.: The tertiary
creep of polycrystalline ice: experimental evidence for stress-dependent
levels of strain-rate enhancement, J. Glaciol., 58, 301–314,
https://doi.org/10.3189/2012JoG11J149, 2012. a
Vallelonga, P., Christianson, K., Alley, R. B., Anandakrishnan, S., Christian, J. E. M., Dahl-Jensen, D., Gkinis, V., Holme, C., Jacobel, R. W., Karlsson, N. B., Keisling, B. A., Kipfstuhl, S., Kjær, H. A., Kristensen, M. E. L., Muto, A., Peters, L. E., Popp, T., Riverman, K. L., Svensson, A. M., Tibuleac, C., Vinther, B. M., Weng, Y., and Winstrup, M.: Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS), The Cryosphere, 8, 1275–1287, https://doi.org/10.5194/tc-8-1275-2014, 2014. a
Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar,
L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen,
S. O., and Weiss, H.: Formal ratification of the subdivision of the Holocene
Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype
Sections and Points (GSSPs) and three new stages/subseries, Episodes, 41,
213–223, https://doi.org/10.18814/epiiugs/2018/018016, 2018. a
Wang, Y., Thorsteinsson, T., Kipfstuhl, J., Miller, H., Dahl-Jensen, D., and
Shoji, H.: A vertical girdle fabric in the NorthGRIP deep ice core, North
Greenland, Ann. Glaciol., 35, 515–520,
https://doi.org/10.3189/172756402781817301, 2002. a
Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H., and Yoshida,
N.: Homogeneous climate variability across East Antarctica over the past
three glacial cycles, Nature, 422, 509–512, https://doi.org/10.1038/nature01525,
2003. a
Weertman, J.: Creep of Ice, in: Physics and Chemistry of Ice, edited by:
Whalley, E., Jones, S. W., and Gold, L. W., Royal Society of
Canada, Ottawa, 320–37, 1973. a
Wegner, A., Fischer, H., Delmonte, B., Petit, J.-R., Erhardt, T., Ruth, U.,
Svensson, A., Vinther, B., and Miller, H.: The role of seasonality of
mineral dust concentration and size on glacial/interglacial dust changes in
the EPICA Dronning Maud Land ice core, J. Geophys. Res.-Atmos., 120, 9916–9931, https://doi.org/10.1002/2015JD023608, 2015. a, b, c
Weikusat, C., Freitag, J., and Kipfstuhl, S.: Raman spectroscopy of gaseous
inclusions in EDML ice core: first results – microbubbles, J. Glaciol., 58, 761–766, https://doi.org/10.3189/2012JoG11J222, 2012. a
Weikusat, I., Kipfstuhl, S., Faria, S. H., Azuma, N., and Miyamoto, A.:
Subgrain boundaries and related microstructural features in EDML
(Antarctica) deep ice core, J. Glaciol., 55, 461–472,
https://doi.org/10.3189/002214309788816614, 2009.
a, b, c
Weikusat, I., Miyamoto, A., Faria, S. H., Kipfstuhl, S., Azuma, N., and Hondoh,
T.: Subgrain boundaries in Antarctic ice quantified by X-ray Laue
diffraction, J. Glaciol., 57, 111–120,
https://doi.org/10.3189/002214311795306628, 2011. a
Weikusat, I., Jansen, D., Binder, T., Eichler, J., Faria, S. H., Wilhelms, F.,
Kipfstuhl, S., Sheldon, S., Miller, H., Dahl-Jensen, D., and Kleiner, T.:
Physical analysis of an Antarctic ice core – towards an integration of
micro- and macrodynamics of polar ice, Philos. T.
Roy. Soc. A, 375,
20150347, https://doi.org/10.1098/rsta.2015.0347, 2017a. a, b
Weikusat, I., Kuiper, E.-J. N., Pennock, G. M., Kipfstuhl, S., and Drury, M. R.: EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice, Solid Earth, 8, 883–898, https://doi.org/10.5194/se-8-883-2017, 2017.b. a
Weikusat, I., Westhoff, J., Kipfstuhl, S., and Jansen, D.: Visual stratigraphy
of the EastGRIP ice core (14 m–2021 m depth, drilling period 2017–2019), PANGAEA,
https://doi.org/10.1594/PANGAEA.925014, 2020. a
Weikusat, I., Stoll, N., Eichler, J., Kerch, J., Jansen, D., and Kipfstuhl, S.: Grain size section mean data for the upper 1340 m of the EGRIP ice core and eleven c-axes stereo plots (all derived with the Fabric Analyzer G50), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933049, 2021. a
Weiss, J., Vidot, J., Gay, M., Arnaud, L., Duval, P., and Petit, J. R.: Dome
Concordia ice microstructure: impurities effect on grain growth, Ann. Glaciol., 35, 552–558, https://doi.org/10.3189/172756402781816573, 2002. a, b, c
Westhoff, J., Stoll, N., Franke, S., Weikusat, I., Bons, P., Kerch, J., Jansen,
D., Kipfstuhl, S., and Dahl-Jensen, D.: A stratigraphy-based method for
reconstructing ice core orientation, Ann. Glaciol., 62, 191–202,
https://doi.org/10.1017/aog.2020.76, 2020. a, b, c, d
Wilhelms, F., Kipfstuhl, J., Miller, H., Heinloth, K., and Firestone, J.:
Precise dielectric profiling of ice cores: a new device with improved
guarding and its theory, J. Glaciol., 44, 171–174, 1998. a
Wilson, C. J., Russell-Head, D. S., and Sim, H. M.: The application of an
automated fabric analyzer system to the textural evolution of folded ice
layers in shear zones, Ann. Glaciol., 37, 7–17,
https://doi.org/10.3189/172756403781815401, 2003. a
Wolff, E. W., Miners, W. D., Moore, J. C., and Paren, J. G.: Factors
Controlling the Electrical Conductivity of Ice from the Polar Regions-A
Summary, J. Phys. Chem. B, 101, 6090–6094,
https://doi.org/10.1021/jp9631543, 1997. a
Yakobi-Hancock, J. D., Ladino, L. A., and Abbatt, J. P. D.: Feldspar minerals as efficient deposition ice nuclei, Atmos. Chem. Phys., 13, 11175–11185, https://doi.org/10.5194/acp-13-11175-2013, 2013. a
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice...