Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4607-2021
https://doi.org/10.5194/tc-15-4607-2021
Research article
 | 
29 Sep 2021
Research article |  | 29 Sep 2021

A seasonal algorithm of the snow-covered area fraction for mountainous terrain

Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin

Related authors

A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Fractional snow-covered area: scale-independent peak of winter parameterization
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021,https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary

Cited articles

Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006. a
Baba, M. W., Gascoin, S., and Hanich, L.: Assimilation of Sentinel-2 Data into a Snowpack Model in the High Atlas of Morocco, Remote Sens., 10, 1982, https://doi.org/10.3390/rs10121982, 2018. a
Bellaire, S. and Jamieson, B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold. Reg. Sci. Technol., 94, 37–44, 2013. a
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. a, b
Cluzet, B., Revuelto, J., Lafaysse, M., Tuzet, F., Cosme, E., Picard, G., Arnaud, L., and Dumont, M.: Towards the assimilation of satellite reflectance into semi-distributed ensemble snowpack simulations, Cold Reg. Sci. Technol., 170, 102918, https://doi.org/10.1016/j.coldregions.2019.102918, 2020. a
Download
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Share