Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations
William Gregory
CORRESPONDING AUTHOR
Centre for Polar Observation and Modelling, Earth Sciences, University College London, London, UK
Isobel R. Lawrence
Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK
Michel Tsamados
Centre for Polar Observation and Modelling, Earth Sciences, University College London, London, UK
Related authors
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Preprint under review for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Thomas Slater, Isobel R. Lawrence, Inès N. Otosaka, Andrew Shepherd, Noel Gourmelen, Livia Jakob, Paul Tepes, Lin Gilbert, and Peter Nienow
The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021, https://doi.org/10.5194/tc-15-233-2021, 2021
Short summary
Short summary
Satellite observations are the best method for tracking ice loss, because the cryosphere is vast and remote. Using these, and some numerical models, we show that Earth has lost 28 trillion tonnes (Tt) of ice since 1994 from Arctic sea ice (7.6 Tt), ice shelves (6.5 Tt), mountain glaciers (6.1 Tt), the Greenland (3.8 Tt) and Antarctic ice sheets (2.5 Tt), and Antarctic sea ice (0.9 Tt). It has taken just 3.2 % of the excess energy Earth has absorbed due to climate warming to cause this ice loss.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
David Schröder, Danny L. Feltham, Michel Tsamados, Andy Ridout, and Rachel Tilling
The Cryosphere, 13, 125–139, https://doi.org/10.5194/tc-13-125-2019, https://doi.org/10.5194/tc-13-125-2019, 2019
Short summary
Short summary
This paper uses sea ice thickness data (CryoSat-2) to identify and correct shortcomings in simulating winter ice growth in the widely used sea ice model CICE. Adding a model of snow drift and using a different scheme for calculating the ice conductivity improve model results. Sensitivity studies demonstrate that atmospheric winter conditions have little impact on winter ice growth, and the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Thomas W. K. Armitage, Sheldon Bacon, Andy L. Ridout, Alek A. Petty, Steven Wolbach, and Michel Tsamados
The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017, https://doi.org/10.5194/tc-11-1767-2017, 2017
Short summary
Short summary
We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean and characterise their seasonal to decadal variability. We also present seasonal climatologies of eddy kinetic energy, and examine the changing location of the Beaufort Gyre. Geostrophic current variability highlights the complex interplay between seasonally varying forcing and sea ice conditions, changing ice–ocean coupling and increasing ocean surface stress in the 2000s.
Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge
The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, https://doi.org/10.5194/tc-10-1161-2016, 2016
Short summary
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.
Daniela Flocco, Daniel L. Feltham, David Schroeder, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-118, https://doi.org/10.5194/tc-2016-118, 2016
Preprint withdrawn
Short summary
Short summary
Melt ponds form over the sea ice cover in the Arctic and impact the surface albedo inducing a positive feedback leading to further melting.
While they refreeze, ponds delay basal sea ice growth in Autumn impacting the internal sea ice temperature and therefore its basal growth rate. By using a numerical model we estimate an inhibited basal growth of up to 228 km3, which represents 25 % of the basal sea ice growth estimated by PIOMAS during the months of September and October.
Related subject area
Discipline: Sea ice | Subject: Data Assimilation
Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model
Local analytical optimal nudging for assimilating AMSR2 sea ice concentration in a high-resolution pan-Arctic coupled ocean (HYCOM 2.2.98) and sea ice (CICE 5.1.2) model
Towards improving short-term sea ice predictability using deformation observations
Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates
The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office's Forecast Ocean Assimilation Model (FOAM)
Estimating parameters in a sea ice model using an ensemble Kalman filter
Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system
Estimation of sea ice parameters from sea ice model with assimilated ice concentration and SST
Impact of assimilating a merged sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024, https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Short summary
Individual satellite passes instead of daily means of sea ice concentration are used to correct the sea ice model forecast in the Barents Sea. The use of passes provides a significantly larger improvement of the forecasts even after a 7 d period due to the more precise information on temporal and spatial variability contained in the passes. One major advantage of the use of satellite passes is that there is no need to wait for the daily mean availability in order to update the forecast.
Keguang Wang, Alfatih Ali, and Caixin Wang
The Cryosphere, 17, 4487–4510, https://doi.org/10.5194/tc-17-4487-2023, https://doi.org/10.5194/tc-17-4487-2023, 2023
Short summary
Short summary
A simple, efficient. and accurate data assimilation method, local analytical optimal nudging (LAON), is introduced to assimilate high-resolution sea ice concentration in a pan-Arctic high-resolution coupled ocean and sea ice model. The method provides a new vision by nudging the model evolution to the optimal estimate forwardly, continuously, and smoothly. This method is applicable to the general nudging theory and applications in physics, Earth science, psychology, and behavior sciences.
Anton Korosov, Pierre Rampal, Yue Ying, Einar Ólason, and Timothy Williams
The Cryosphere, 17, 4223–4240, https://doi.org/10.5194/tc-17-4223-2023, https://doi.org/10.5194/tc-17-4223-2023, 2023
Short summary
Short summary
It is possible to compute sea ice motion from satellite observations and detect areas where ice converges (moves together), forms ice ridges or diverges (moves apart) and opens leads. However, it is difficult to predict the exact motion of sea ice and position of ice ridges or leads using numerical models. We propose a new method to initialise a numerical model from satellite observations to improve the accuracy of the forecasted position of leads and ridges for safer navigation.
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738, https://doi.org/10.5194/tc-17-3721-2023, https://doi.org/10.5194/tc-17-3721-2023, 2023
Short summary
Short summary
The satellite CryoSat-2 measures freeboard (FB), which is used to derive sea ice thickness (SIT) under the assumption of hydrostatic balance. This SIT comes with large uncertainties due to errors in the observed FB, sea ice density, snow density and snow thickness. This study presents a new method to derive SIT by assimilating the FB into the sea ice model, evaluates the resulting SIT against in situ observations and compares the results to the CryoSat-2-derived SIT without FB assimilation.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Emma K. Fiedler, Matthew J. Martin, Ed Blockley, Davi Mignac, Nicolas Fournier, Andy Ridout, Andrew Shepherd, and Rachel Tilling
The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, https://doi.org/10.5194/tc-16-61-2022, 2022
Short summary
Short summary
Sea ice thickness (SIT) observations derived from CryoSat-2 satellite measurements have been successfully used to initialise an ocean and sea ice forecasting model (FOAM). Other centres have previously used gridded and averaged SIT observations for this purpose, but we demonstrate here for the first time that SIT measurements along the satellite orbit track can be used. Validation of the resulting modelled SIT demonstrates improvements in the model performance compared to a control.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
Siva Prasad, Igor Zakharov, Peter McGuire, Desmond Power, and Martin Richard
The Cryosphere, 12, 3949–3965, https://doi.org/10.5194/tc-12-3949-2018, https://doi.org/10.5194/tc-12-3949-2018, 2018
Short summary
Short summary
A numerical sea ice model, CICE, was used along with data assimilation to derive sea ice parameters in the region of Baffin Bay, Hudson Bay and Labrador Sea. The modelled ice parameters were compared with parameters estimated from remote-sensing data. The ice concentration, thickness and freeboard estimates from the model assimilated with both ice concentration and SST were found to be within the uncertainty of the observations except during March.
Jiping Xie, François Counillon, and Laurent Bertino
The Cryosphere, 12, 3671–3691, https://doi.org/10.5194/tc-12-3671-2018, https://doi.org/10.5194/tc-12-3671-2018, 2018
Short summary
Short summary
We use the winter sea-ice thickness dataset CS2SMOS merged from two satellites SMOS and CryoSat-2 for assimilation into an ice–ocean reanalysis of the Arctic, complemented by several other ocean and sea-ice measurements, using an Ensemble Kalman Filter. The errors of sea-ice thickness are reduced by 28% and the improvements persists through the summer when observations are unavailable. Improvements of ice drift are however limited to the Central Arctic.
Cited articles
Aaboe, S., Breivik, L.-A., Sørensen, A., Eastwood, S., and Lavergne, T.:
Global sea ice edge and type product user's manual, OSI-403-c & EUMETSAT,
2016. a
Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz,
N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft, A. J.:
Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean
modeling system, Adv. Space Res., 62, 1265–1280,
https://doi.org/10.1016/j.asr.2017.12.030, 2018. a
Balan-Sarojini, B., Tietsche, S., Mayer, M., Balmaseda, M., Zuo, H., de Rosnay, P., Stockdale, T., and Vitart, F.: Year-round impact of winter sea ice thickness observations on seasonal forecasts, The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, 2021. a
Bishop, C. M.: Pattern recognition and machine learning, Springer, ISBN 978-0387-31073-2, chap. 3, 152–165,
2006. a
Blanchard-Wrigglesworth, E. and Bitz, C. M.: Characteristics of Arctic sea-ice
thickness variability in GCMs, J. Climate, 27, 8244–8258,
https://doi.org/10.1175/JCLI-D-14-00345.1, 2014. a
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. a
Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and
Yang, X.: Skillful regional prediction of Arctic sea ice on seasonal
timescales, Geophys. Res. Lett., 44, 4953–4964,
https://doi.org/10.1002/2017GL073155, 2017. a
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea ice
concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave
data, version 1. NASA Natl. Snow and Ice Data Cent, Distrib. Active Arch.
Cent., Boulder, Colo., https://doi.org/10.5067/8GQ8LZQVL0VL, 1996. a
Chevallier, M. and Salas-Mélia, D.: The role of sea ice thickness
distribution in the Arctic sea ice potential predictability: A diagnostic
approach with a coupled GCM, J. Climate, 25, 3025–3038,
https://doi.org/10.1175/JCLI-D-11-00209.1, 2012. a
Collow, T. W., Wang, W., Kumar, A., and Zhang, J.: Improving Arctic sea ice
prediction using PIOMAS initial sea ice thickness in a coupled
ocean–atmosphere model, Mon. Weather Rev., 143, 4618–4630,
https://doi.org/10.1175/MWR-D-15-0097.1, 2015. a
Cressie, N. and Johannesson, G.: Fixed rank kriging for very large spatial data
sets, J. Roy. Stat. Soc. Ser. B, 70, 209–226, https://doi.org/10.1111/j.1467-9868.2007.00633.x, 2008. a
Day, J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness
initialization improve seasonal forecast skill?, Geophys. Res.
Lett., 41, 7566–7575, https://doi.org/10.1002/2014GL061694, 2014. a
Dinardo, S., Lucas, B., and Benveniste, J.: SAR altimetry processing on demand
service for CryoSat-2 at ESA G-POD, in: Proc. of 2014 Conference on Big Data
from Space (BiDS’14), p. 386, https://doi.org/10.2788/854791, 2014. a
Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., and
Rodrigues, L. R.: Seasonal climate predictability and forecasting: status and
prospects, Wires Clim. Change, 4, 245–268,
https://doi.org/10.1002/wcc.217, 2013. a
ERA5: Copernicus Climate Change Service (CDS): Fifth generation of ECMWF
atmospheric reanalyses of the global climate, available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 5 August 2019),
2017. a
Fetterer, F., Savoie, M., Helfrich, S., and Clemente-Colón, P.: Multisensor
analyzed sea ice extent-northern hemisphere (masie-nh), Tech. rep., Technical
report, National Snow and Ice Data Center, Boulder, Colorado USA, https://doi.org/10.7265/N5GT5K3K, 2010. a, b, c
Gregory, W.: William-gregory/OptimalInterpolation: CS2S3 daily pan-Arctic radar freeboards (Version v0.1-quicklook), Zenodo, https://doi.org/10.5281/zenodo.5005980, 2021. a
Gregory, W., Tsamados, M., Stroeve, J., and Sollich, P.: Regional September Sea
Ice Forecasting with Complex Networks and Gaussian Processes, Weather
Forecast., 35, 793–806, https://doi.org/10.1175/WAF-D-19-0107.1, 2020. a
Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J.,
Déqué, M., Doblas-Reyes, F. J., Fučkar, N. S., Germe, A.,
Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D., and Tietsche, S.: A review on Arctic sea-ice predictability
and prediction on seasonal to decadal time-scales, Q. J.
Roy. Meteor. Soc., 142, 546–561, https://doi.org/10.1002/qj.2401, 2016. a
Kang, E. L., Cressie, N., and Shi, T.: Using temporal variability to improve
spatial mapping with application to satellite data, Can. J.
Stat., 38, 271–289, https://doi.org/10.1002/cjs.10063, 2010. a
Kostopoulou, E.: Applicability of ordinary Kriging modeling techniques for
filling satellite data gaps in support of coastal management, Model. Earth
Syst. Environ., 7, 1145–1158, https://doi.org/10.1007/s40808-020-00940-5, 2020. a
Kwok, R.: Sea ice convergence along the Arctic coasts of Greenland and the
Canadian Arctic Archipelago: Variability and extremes (1992–2014),
Geophys. Res. Lett., 42, 7598–7605, https://doi.org/10.1002/2015GL065462,
2015. a
Kwok, R., Kacimi, S., Markus, T., Kurtz, N., Studinger, M., Sonntag, J.,
Manizade, S., Boisvert, L., and Harbeck, J.: ICESat-2 Surface Height and Sea
Ice Freeboard Assessed With ATM Lidar Acquisitions From Operation IceBridge,
Geophys. Res. Lett., 46, 11228–11236,
https://doi.org/10.1029/2019GL084976, 2019. a
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and Ridout, A. L.: Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards, The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, 2018. a
Lawrence, I. R., Armitage, T. W., Tsamados, M. C., Stroeve, J. C., Dinardo, S.,
Ridout, A. L., Muir, A., Tilling, R. L., and Shepherd, A.: Extending the
Arctic sea ice freeboard and sea level record with the Sentinel-3 radar
altimeters, Adv. Space Res., 68, 711–723, https://doi.org/10.1016/j.asr.2019.10.011,
2019. a, b, c, d, e, f, g, h, i
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature, 425, 947–950,
https://doi.org/10.1038/nature02050, 2003. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40,
732–737, https://doi.org/10.1002/grl.50193, 2013. a
Le Traon, P., Nadal, F., and Ducet, N.: An improved mapping method of
multisatellite altimeter data, J. Atmos. Ocean. Tech.,
15, 522–534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2, 1997. a, b
Massonnet, F., Fichefet, T., and Goosse, H.: Prospects for improved seasonal
Arctic sea ice predictions from multivariate data assimilation, Ocean
Modell., 88, 16–25, https://doi.org/10.1016/j.ocemod.2014.12.013, 2015. a
Nolin, A. W., Fetterer, F. M., and Scambos, T. A.: Surface roughness
characterizations of sea ice and ice sheets: Case studies with MISR data,
IEEE T. Geosci. Remote, 40, 1605–1615,
https://doi.org/10.1109/TGRS.2002.801581, 2002. a
Ono, J., Komuro, Y., and Tatebe, H.: Impact of sea-ice thickness initialized in
April on Arctic sea-ice extent predictability with the MIROC climate model,
Ann. Glaciol., 61, 97–105, https://doi.org/10.1017/aog.2020.13, 2020. a
Paciorek, C. J. and Schervish, M. J.: Spatial modelling using a new class of
nonstationary covariance functions, Environmetrics, 17, 483–506,
https://doi.org/10.1002/env.785, 2005. a
Petty, A. A., Tsamados, M. C., Kurtz, N. T., Farrell, S. L., Newman, T., Harbeck, J. P., Feltham, D. L., and Richter-Menge, J. A.: Characterizing Arctic sea ice topography using high-resolution IceBridge data, The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, 2016. a
Ponsoni, L., Massonnet, F., Fichefet, T., Chevallier, M., and Docquier, D.: On the timescales and length scales of the Arctic sea ice thickness anomalies: a study based on 14 reanalyses, The Cryosphere, 13, 521–543, https://doi.org/10.5194/tc-13-521-2019, 2019. a
Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury,
S., Guillot, A., Hendricks, S., Kurekin, A. A., Müller, F. L., Ricker, R., Skourup, H., and Tsamados, M.:
Retrieving sea level and freeboard in the Arctic: a review of current radar
altimetry methodologies and future perspectives, Remote Sensing, 11, 881,
https://doi.org/10.3390/rs11070881, 2019. a
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017. a, b, c, d
Sakov, P. and Bertino, L.: Relation between two common localisation methods for
the EnKF, Comput. Geosci., 15, 225–237,
https://doi.org/10.1007/s10596-010-9202-6, 2011. a
Sakshaug, E., Bjørge, A., Gulliksen, B., Loeng, H., and Mehlum, F.:
Structure, biomass distribution, and energetics of the pelagic ecosystem in
the Barents Sea: a synopsis, Polar Biol., 14, 405–411,
https://doi.org/10.1007/BF00240261, 1994. a
Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A., and Tilling, R.: New insight from CryoSat-2 sea ice thickness for sea ice modelling, The Cryosphere, 13, 125–139, https://doi.org/10.5194/tc-13-125-2019, 2019. a, b
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys.
Res.-Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011. a, b, c
Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P.: Review article: Earth's ice imbalance, The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021, 2021. a
Stirling, I.: The importance of polynyas, ice edges, and leads to marine
mammals and birds, J. Marine Syst., 10, 9–21,
https://doi.org/10.1016/S0924-7963(96)00054-1, 1997. a
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons,
Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56,
2018. a
Stroeve, J., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in
Arctic melt season and implications for sea ice loss, Geophys. Res.
Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014a. a
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014b. a
Stroeve, J., Vancoppenolle, M., Veyssière, G., Lebrun, M., Castellani, G.,
Babin, M., Karcher, M., Landy, J., Liston, G. E., and Wilkinson, J.: A
multi-sensor and modeling approach for mapping light under sea ice during the
ice-growth season, Front. Marine Sci., 7, 1253,
https://doi.org/10.3389/fmars.2020.592337, 2021. a
Sun, A. Y., Wang, D., and Xu, X.: Monthly streamflow forecasting using Gaussian
process regression, J. Hydrol., 511, 72–81,
https://doi.org/10.1016/j.jhydrol.2014.01.023, 2014. a
Tilling, R. L., Ridout, A., and Shepherd, A.: Near-real-time Arctic sea ice thickness and volume from CryoSat-2, The Cryosphere, 10, 2003–2012, https://doi.org/10.5194/tc-10-2003-2016, 2016. a
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space
Res., 62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018. a, b, c
Wagner, P. M., Hughes, N., Bourbonnais, P., Stroeve, J., Rabenstein, L., Bhatt,
U., Little, J., Wiggins, H., and Fleming, A.: Sea-ice information and
forecast needs for industry maritime stakeholders, Polar Geogr., 43,
160–187, https://doi.org/10.1080/1088937X.2020.1766592, 2020. a
Zhang, J. and Rothrock, D.: Modeling global sea ice with a thickness and
enthalpy distribution model in generalized curvilinear coordinates, Mon.
Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003. a
Zhang, Y.-F., Bitz, C. M., Anderson, J. L., Collins, N., Hendricks, J., Hoar,
T., Raeder, K., and Massonnet, F.: Insights on sea ice data assimilation from
perfect model observing system simulation experiments, J. Climate,
31, 5911–5926, https://doi.org/10.1175/JCLI-D-17-0904.1, 2018. a
Zhang, Y.-F., Bushuk, M., Winton, M., Hurlin, B., Yang, X., Delworth, T., and
Jia, L.: Assimilation of Satellite-retrieved Sea Ice Concentration and
Prospects for September Predictions of Arctic Sea Ice, J. Climate,
34, 2107–2126, https://doi.org/10.1175/JCLI-D-20-0469.1, 2021. a
Short summary
Satellite measurements of radar freeboard allow us to compute the thickness of sea ice from space; however attaining measurements across the entire Arctic basin typically takes up to 30 d. Here we present a statistical method which allows us to combine observations from three separate satellites to generate daily estimates of radar freeboard across the Arctic Basin. This helps us understand how sea ice thickness is changing on shorter timescales and what may be causing these changes.
Satellite measurements of radar freeboard allow us to compute the thickness of sea ice from space;...