Articles | Volume 14, issue 10
The Cryosphere, 14, 3269–3286, 2020
https://doi.org/10.5194/tc-14-3269-2020
The Cryosphere, 14, 3269–3286, 2020
https://doi.org/10.5194/tc-14-3269-2020

Research article 02 Oct 2020

Research article | 02 Oct 2020

Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements

Gregory Church et al.

Related authors

Ground-penetrating radar imaging reveals glacier's drainage network in 3D
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021,https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021,https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021,https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary

Cited articles

Arcone, S. A. and Yankielun, N. E.: 1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., J. Glaciol., 46, 477–490, https://doi.org/10.3189/172756500781833133, 2000. a
Arcone, S. A., Lawson, D. E., and Delaney, A. J.: Short-pulse radar wavelet recovery and resolution of dielectric contrasts within englacial and basal ice of Matanuska Glacier, Alaska, U.S.A., J. Glaciol., 41, 68–86, https://doi.org/10.1017/S0022143000017779, 1995. a
Bælum, K. and Benn, D. I.: Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar, The Cryosphere, 5, 139–149, https://doi.org/10.5194/tc-5-139-2011, 2011. a, b
Bartholomaus, T. C., Amundson, J. M., Walter, J. I., O'Neel, S., West, M. E., and Larsen, C. F.: Subglacial discharge at tidewater glaciers revealed by seismic tremor, Geophys. Res. Lett., 42, 6391–6398, https://doi.org/10.1002/2015GL064590, 2015. a
Benn, D., Gulley, J., Luckman, A., Adamek, A., and Glowacki, P. S.: Englacial drainage systems formed by hydrologically driven crevasse propagation, J. Glaciol., 55, 513–523, https://doi.org/10.3189/002214309788816669, 2009. a
Download
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.