Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1709-2019
https://doi.org/10.5194/tc-13-1709-2019
Research article
 | 
26 Jun 2019
Research article |  | 26 Jun 2019

Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada

Ben M. Pelto, Brian Menounos, and Shawn J. Marshall

Related authors

Late Holocene glacier and climate fluctuations in the Mackenzie and Selwyn mountain ranges, northwestern Canada
Adam C. Hawkins, Brian Menounos, Brent M. Goehring, Gerald Osborn, Ben M. Pelto, Christopher M. Darvill, and Joerg M. Schaefer
The Cryosphere, 17, 4381–4397, https://doi.org/10.5194/tc-17-4381-2023,https://doi.org/10.5194/tc-17-4381-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Mass Balance Obs
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023,https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023,https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Martina Barandun and Eric Pohl
The Cryosphere, 17, 1343–1371, https://doi.org/10.5194/tc-17-1343-2023,https://doi.org/10.5194/tc-17-1343-2023, 2023
Short summary
Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data
Jakub Małecki
The Cryosphere, 16, 2067–2082, https://doi.org/10.5194/tc-16-2067-2022,https://doi.org/10.5194/tc-16-2067-2022, 2022
Short summary
Characteristics of mountain glaciers in the northern Japanese Alps
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106, https://doi.org/10.5194/tc-16-1091-2022,https://doi.org/10.5194/tc-16-1091-2022, 2022
Short summary

Cited articles

Abermann, J., Fischer, A., Lambrecht, A., and Geist, T.: On the potential of very high-resolution repeat DEMs in glacial and periglacial environments, The Cryosphere, 4, 53–65, https://doi.org/10.5194/tc-4-53-2010, 2010. 
Adams, W.: Areal differentiation of snow cover in east central Ontario, Water Resour. Res., 12, 1226–1234, 1976. 
Ambach, W., Bortenschlager, S., and Eisner, H.: Pollen-analysis investigation of a 20 m Firn Pit on the Kesselwandferner (Ötztal Alps), J. Glaciol., 6, 233–236, 1966. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Beedle, M. J., Menounos, B., and Wheate, R.: An evaluation of mass-balance methods applied to Castle Creek Glacier, British Columbia, Canada, J. Glaciol., 60, 262–276, https://doi.org/10.3189/2014JoG13J091, 2014. 
Download
Short summary
Changes in glacier mass are the direct response to meteorological conditions during the accumulation and melt seasons. We derived multi-year, seasonal mass balance from airborne laser scanning surveys and compared them to field measurements for six glaciers in the Columbia and Rocky Mountains, Canada. Our method can accurately measure seasonal changes in glacier mass and can be easily adapted to derive seasonal mass change for entire mountain ranges.