Articles | Volume 13, issue 4
The Cryosphere, 13, 1395–1408, 2019
https://doi.org/10.5194/tc-13-1395-2019
The Cryosphere, 13, 1395–1408, 2019
https://doi.org/10.5194/tc-13-1395-2019

Research article 29 Apr 2019

Research article | 29 Apr 2019

Instantaneous sea ice drift speed from TanDEM-X interferometry

Dyre Oliver Dammann et al.

Related authors

Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Andrew R. Mahoney, Hajo Eicken, and Franz J. Meyer
The Cryosphere, 13, 557–577, https://doi.org/10.5194/tc-13-557-2019,https://doi.org/10.5194/tc-13-557-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021,https://doi.org/10.5194/tc-15-2835-2021, 2021
Short summary
An improved sea ice detection algorithm using MODIS: application as a new European sea ice extent indicator
Joan Antoni Parera-Portell, Raquel Ubach, and Charles Gignac
The Cryosphere, 15, 2803–2818, https://doi.org/10.5194/tc-15-2803-2021,https://doi.org/10.5194/tc-15-2803-2021, 2021
Short summary
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021,https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021,https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary

Cited articles

Ahlnäs, K. and Garrison, G.: Satellite and oceanographic observations of the warm coastal current in the Chukchi Sea, ARCTIC, 37, 244–254, 1984. 
Arctic Council: Arctic marine shipping assessment, Protection of the Arctic Marine Environment Working Group (PAME), Akureyri, Island, 190, 2009. 
Bamler, R. and Hartl, P.: Synthetic aperture radar interferometry, Inverse Probl., 14, R1, https://doi.org/10.1088/0266-5611/14/4/001, 1998. 
Berg, A. and Eriksson, L. E. B.: Investigation of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images, IEEE T. Geosci. Remote, 52, 5023–5033, 2014. 
Berg, A., Dammert, P., and Eriksson, L. E. B.: X-Band Interferometric SAR Observations of Baltic Fast Ice, IEEE T. Geosci. Remote, 53, 1248–1256, https://doi.org/10.1109/TGRS.2014.2336752, 2015. 
Download
Short summary
We evaluate single-pass synthetic aperture radar interferometry (InSAR) as a tool to assess sea ice drift and deformation. Initial validation shows that TanDEM-X phase-derived drift speed corresponds well with ground-based radar-derived motion. We further show that InSAR enables the identification of potentially important short-lived dynamic processes otherwise difficult to observe, with possible implication for engineering and sea ice modeling.