Articles | Volume 13, issue 4
https://doi.org/10.5194/tc-13-1395-2019
https://doi.org/10.5194/tc-13-1395-2019
Research article
 | 
29 Apr 2019
Research article |  | 29 Apr 2019

Instantaneous sea ice drift speed from TanDEM-X interferometry

Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi

Related authors

Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Andrew R. Mahoney, Hajo Eicken, and Franz J. Meyer
The Cryosphere, 13, 557–577, https://doi.org/10.5194/tc-13-557-2019,https://doi.org/10.5194/tc-13-557-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary

Cited articles

Ahlnäs, K. and Garrison, G.: Satellite and oceanographic observations of the warm coastal current in the Chukchi Sea, ARCTIC, 37, 244–254, 1984. 
Arctic Council: Arctic marine shipping assessment, Protection of the Arctic Marine Environment Working Group (PAME), Akureyri, Island, 190, 2009. 
Bamler, R. and Hartl, P.: Synthetic aperture radar interferometry, Inverse Probl., 14, R1, https://doi.org/10.1088/0266-5611/14/4/001, 1998. 
Berg, A. and Eriksson, L. E. B.: Investigation of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images, IEEE T. Geosci. Remote, 52, 5023–5033, 2014. 
Berg, A., Dammert, P., and Eriksson, L. E. B.: X-Band Interferometric SAR Observations of Baltic Fast Ice, IEEE T. Geosci. Remote, 53, 1248–1256, https://doi.org/10.1109/TGRS.2014.2336752, 2015. 
Download
Short summary
We evaluate single-pass synthetic aperture radar interferometry (InSAR) as a tool to assess sea ice drift and deformation. Initial validation shows that TanDEM-X phase-derived drift speed corresponds well with ground-based radar-derived motion. We further show that InSAR enables the identification of potentially important short-lived dynamic processes otherwise difficult to observe, with possible implication for engineering and sea ice modeling.
Share