Articles | Volume 13, issue 3
https://doi.org/10.5194/tc-13-1025-2019
https://doi.org/10.5194/tc-13-1025-2019
Research article
 | 
29 Mar 2019
Research article |  | 29 Mar 2019

Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017

Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu

Related authors

Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022,https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Cited articles

Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14485–14498, 1989. 
Agnew, T., Lambe, A., and Long, D.: Estimating sea ice area flux across the Canadian Arctic Archipelago using enhanced AMSR-E, J. Geophys. Res., 113, C10011, https://doi.org/10.1029/2007JC004582, 2008. 
Bi, H., Huang, H., Fu, M., Fu, T., Zhou, X., and Xu, X.: Estimating sea-ice volume flux out of the Laptev Sea using multiple satellite observations, Polar Res., 35, 1–13, https://doi.org/10.3402/polar.v35.24875, 2016a. 
Bi, H., Sun, K., Zhou, X., Huang, H., and Xu, X.: Arctic Sea Ice Area Export Through the Fram Strait Estimated From Satellite-Based Data:1988–2012, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 9, 3144–3157, 2016b. 
Cho, K., Sasaki, N., Shimoda, H., Sakata, T., and Nishio, F.: Evaluation and improvement of SSM/I sea ice concentration algorithms for the Sea of Okhotsk, J. Remote Sens. Soc. JPN, 16, 47–58, 1996. 
Download
Short summary
Baffin Bay serves as a huge reservoir of sea ice which provides solid freshwater sources for the seas downstream. Based on satellite observations, significant increasing trends are found for the annual sea ice area flux through the three gates. These trends are chiefly related to the increasing ice motion which is associated with thinner ice owing to the warmer climate (i.e., higher surface air temperature and shortened freezing period) and increased air and water drag coefficients.
Share