Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-993-2018
https://doi.org/10.5194/tc-12-993-2018
Research article
 | Highlight paper
 | 
22 Mar 2018
Research article | Highlight paper |  | 22 Mar 2018

On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang

Related authors

Quantifying the Influence of Snow over Sea Ice Morphology on L-Band Microwave Satellite Observations in the Southern Ocean
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-81,https://doi.org/10.5194/egusphere-2024-81, 2024
Short summary
A 12-Year Climate Record of Wintertime Wave-Affected Marginal Ice Zones in the Atlantic Arctic based on CryoSat-2
Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-243,https://doi.org/10.5194/essd-2023-243, 2023
Revised manuscript under review for ESSD
Short summary
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021,https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Comparison of sea ice kinematics at different resolutions modeled with a grid hierarchy in the Community Earth System Model (version 1.2.1)
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021,https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021,https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary

Related subject area

Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-100,https://doi.org/10.5194/tc-2023-100, 2023
Revised manuscript accepted for TC
Short summary

Cited articles

Aaboe, S., Breivik, L.-A., Eastwood, S., and Sorensen, A.: Sea Ice Edge and Type Products, http://osisaf.met.no/p/ice/edge_type_long_description.html, last access: 30 December 2016. a
Abdalati, B., Zwally, H., Bindschadler, R., Csatho, B., Farrell, S., Fricker, H., Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spinhirne, J., and Webb, C.: The ICESat-2 laser altimetry mission, in: Proceedings of the IEEE, 98, 735–751, 2010. a, b
Brucker, L. and Markus, T.: Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data, J. Geophys. Res.-Oceans, 118, 2892–2905, 2013. a
Burke, W. J., Schmugge, T., and Paris, J. F.: Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations, J. Geophys. Res., 84, 287–294, 1979. a, b, c
Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL, 1996. a
Download
Short summary
This work proposes a new data synergy method for the retrieval of sea ice thickness and snow depth by using colocating L-band passive remote sensing and active laser altimetry. Physical models are adopted for the retrieval, including L-band radiation model and buoyancy relationship. Covariability of snow depth and total freeboard is further utilized to mitigate resolution differences and improve retrievability. The method can be applied to future campaigns including ICESat-2 and WCOM.