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Abstract. The accurate knowledge of sea ice parameters, in-
cluding sea ice thickness and snow depth over the sea ice
cover, is key to both climate studies and data assimilation in
operational forecasts. Large-scale active and passive remote
sensing is the basis for the estimation of these parameters. In
traditional altimetry or the retrieval of snow depth with pas-
sive microwave remote sensing, although the sea ice thick-
ness and the snow depth are closely related, the retrieval of
one parameter is usually carried out under assumptions over
the other. For example, climatological snow depth data or as
derived from reanalyses contain large or unconstrained un-
certainty, which result in large uncertainty in the derived sea
ice thickness and volume. In this study, we explore the po-
tential of combined retrieval of both sea ice thickness and
snow depth using the concurrent active altimetry and pas-
sive microwave remote sensing of the sea ice cover. Specifi-
cally, laser altimetry and L-band passive remote sensing data
are combined using two forward models: the L-band radia-
tion model and the isostatic relationship based on buoyancy
model. Since the laser altimetry usually features much higher
spatial resolution than L-band data from the Soil Moisture
Ocean Salinity (SMOS) satellite, there is potentially covari-
ability between the observed snow freeboard by altimetry
and the retrieval target of snow depth on the spatial scale
of altimetry samples. Statistically significant correlation is
discovered based on high-resolution observations from Op-
eration IceBridge (OIB), and with a nonlinear fitting the co-

variability is incorporated in the retrieval algorithm. By us-
ing fitting parameters derived from large-scale surveys, the
retrievability is greatly improved compared with the retrieval
that assumes flat snow cover (i.e., no covariability). Verifica-
tions with OIB data show good match between the observed
and the retrieved parameters, including both sea ice thickness
and snow depth. With detailed analysis, we show that the er-
ror of the retrieval mainly arises from the difference between
the modeled and the observed (SMOS) L-band brightness
temperature (TB). The narrow swath and the limited cover-
age of the sea ice cover by altimetry is the potential source
of error associated with the modeling of L-band TB and re-
trieval. The proposed retrieval methodology can be applied to
the basin-scale retrieval of sea ice thickness and snow depth,
using concurrent passive remote sensing and active laser al-
timetry based on satellites such as ICESat-2 and WCOM.

1 Introduction

Sea ice is an important factor in the global climate sys-
tem, playing key roles in modulating atmosphere and
ocean interaction in the polar regions, the radiation budget
through albedo effects, the ocean circulation through salin-
ity and freshwater distribution (Screen and Simmonds, 2010;
McPhee et al., 2009; Kurtz et al., 2011; Perovich et al., 2011).
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In the last decades, there has been rapid shrinkage of Arctic
sea ice cover (Rothrock et al., 1999; Comiso et al., 2008;
Stroeve et al., 2012; Laxon et al., 2013; Stocker et al., 2013),
particularly in summer. In addition, the Arctic sea ice is
also experiencing dramatic thinning in recent years (Kwok
et al., 2009; Laxon et al., 2013), with the transition to over-
all younger sea ice age. Besides, the snow as accumulated
over the sea ice cover is important as thermal insulation,
which further hinders atmosphere–ocean interaction, and due
to its higher albedo as compared with sea ice. With respect
to changes in the sea ice cover, there is also significant de-
crease of the snow depth over the sea ice cover in the Arctic
(Webster et al., 2014) which bears great deviation from cli-
matology (Warren et al., 1999), indicating changes in the hy-
drological cycles such as late accumulation due to late freeze
onset. The accurate knowledge of the sea ice cover and the
snow over the sea ice is key to the understanding of related
scientific questions in climate change as well as operational
usage such as seasonal forecast.

Basin-scale observation of the sea ice cover mainly relies
on satellite-based remote sensing. Among the various sea ice
parameters retrieved from satellite data, the most established
is the sea ice concentration (or coverage). Figure 1 shows
the various parameters related to satellite-based laser altime-
try and (L-band) passive radiometry for the sea ice cover.
Passive microwave remote sensing of both the Arctic and
Antarctic is the basis of the retrieval of sea ice extent, with
near-real-time coverage since about 1979 based on satellite
campaigns such as Scanning Multichannel Microwave Ra-
diometer (SMMR), the Special Sensor Microwave/Imager
(SSM/I) (Cavalieri et al., 1999), AMSR-E (Comiso et al.,
2003) and AMSR2 (Toudal Pedersen et al., 2017). However,
the sea ice thickness is generally not retrievable through pas-
sive remote sensing techniques due to the saturation of ra-
diative properties especially for high-frequency ranges such
as SMMR or SSM/I. In situ measurements of ice thickness
through moored upward-looking sonar instruments and elec-
tromagnetic induction sounders mounted on sledges, ships or
helicopters/airplanes can provide sea ice thickness at specific
locations or cross sections (Stroeve et al., 2014), so they are
limited in terms of spatial coverage. Active remote sensing
of satellite altimetry measures the overall height of the sea
surface, serving as the major approach for the thickness re-
trieval of the sea ice. For radar altimetry (RA), it is usually as-
sumed that the radar signals penetrate the snow cover, and the
main reflectance plane is the sea ice–snow interface (Laxon
et al., 2003, 2013). Therefore in RA, the sea ice freeboard is
measured. The sea ice thickness can be retrieved under cer-
tain assumption of the snow loading, such as climatological
snow depth data in Warren et al. (1999) for multi-year sea ice
(MYI) and halved for the first-year sea ice (FYI). For laser
altimetry as in ICESat (Kwok and Cunningham, 2008; Kwok
et al., 2009), the main reflectance surface is the snow–air in-
terface, and the directly retrieved value is actually the snow
(or total) freeboard. The snow loading is also required for

Figure 1. Sea ice parameters in the active and passive remote sens-
ing of the sea ice cover, including sea ice thickness (hi), snow depth
(hs) and snow freeboard (FBs).

the conversion of the snow freeboard to the sea ice thickness.
As analyzed in Tilling et al. (2015) and Zygmuntowska et al.
(2014), the uncertainty in snow depth is the most important
contributor to that of the sea ice thickness and volume.

The major reason for the uncertainty in snow depth and the
loading on the sea ice cover is the lack of stable product for
snow depth over the sea ice with good temporal and spatial
coverage. The snow data as used in ICESat (Kwok and Cun-
ningham, 2008) are derived from reanalysis data and satellite
retrieved sea ice motion, while the climatological snow depth
data in Warren et al. (1999) as used by CryoSat-2 (Laxon
et al., 2013) contain large uncertainty due to interpolation
and interannual variability and may not be adequate for the
present day under the context of climate change (Kwok et al.,
2011; Webster et al., 2014). The retrieval of snow depth with
passive microwave satellite remote sensing has been carried
out in various studies. In Comiso et al. (2003), multi-band
data from AMSR-E are utilized, but only for snow cover over
FYI. Maaß et al. (2013b) explored the retrieval of snow depth
over thick sea ice with L-band data from Soil Moisture Ocean
Salinity (SMOS). SMOS provides full coverage of polar re-
gions on a near-real-time (daily) basis. It has great advan-
tage over satellite altimetry, which can only achieve basin
coverage on the scale of about 1 month. However, the sea
ice thickness is required for the retrieval. Besides, with the
better penetration of L-band signal in the sea ice cover, it is
also demonstrated that there is retrievability of thin sea ice
thickness with L-band data, as in Kaleschke et al. (2010) and
Tian-Kunze et al. (2014). Although airborne remote sensing
methods have limited spatial and temporal coverage, cam-
paigns such as NASA’s Operation IceBridge (OIB) carry out
high-resolution scanning of the sea ice cover (Kwok et al.,
2011; Kurtz and Farrell, 2011; Kurtz et al., 2013; Brucker
and Markus, 2013) and provide invaluable data that are or-
ganized into flight-track-based segments of the sea ice cover.

The Cryosphere, 12, 993–1012, 2018 www.the-cryosphere.net/12/993/2018/



L. Zhou et al.: Sea ice parameter retrieval 995

The data can be adopted for the analysis of the status and
variability of the sea ice cover at fine scale, as well as basin-
scale studies as in Webster et al. (2014).

In this article, we propose a new algorithm that achieves
simultaneous retrieval of both sea ice thickness and snow
depth, based on two observations: the L-band passive mi-
crowave remote sensing and the laser altimetry that measures
the total freeboard of sea ice. The potential of retrieval of
these parameters lies in that both observations (freeboard and
L-band radiative properties) are determined by these sea ice
parameters. Specifically, we use OIB data (sea ice thickness,
snow depth and snow freeboard) and concurrent SMOS L-
band brightness temperature (TB) to simulate the simultane-
ous retrieval. It is found that the covariability of snow depth
and freeboard at the local scale can greatly affect the well-
posedness of the retrieval problem, and it is crucially impor-
tant to include such covariability in the retrieval algorithm.
Based on both realistic retrieval scenarios and large-scale re-
trieval with OIB and SMOS data, we demonstrate that the
proposed algorithm can simultaneously retrieve both sea ice
thickness and snow depth, and the error in the retrieved pa-
rameters mainly arises from the discrepancy between the sea
ice area that corresponds to the SMOS measurement and that
scanned by OIB. In Sect. 2 we first introduce the data, the
models and the protocol of the combined retrieval. Detailed
statistics of snow depth and the effects of covariability is cov-
ered in Sect. 3. By integrating the covariability information,
we propose the retrieval algorithm and carry out evaluation
and analysis in Sect. 4. Section 5 summarizes the article and
provides discussion of related topics and future work.

2 Data and models

2.1 Data

In order to construct and evaluate the retrieval algorithm,
we mainly utilize two datasets, SMOS and OIB. SMOS
measures the microwave radiation emitted from the Earth’s
surface in L-band (1.4 GHz). In this article, we adopt the
L3B TB product from SMOS. The daily gridded SMOS TB
data field is generated from multiple snapshots within a day,
with each snapshot involving multiple incident angles (rang-
ing from 0 to 40◦) and spatially varying gain. The data are
provided on the Equal-Area Scalable Earth (EASE) grid with
a grid resolution of 12.5 km. However, due to the limitation
of the satellite’s antenna size, the effective resolution of L-
band radiometer onboard SMOS is about 40 km.

High-resolution airborne remote sensing of sea ice pa-
rameters is available from OIB missions, starting in 2009
and covering the western Arctic during winter months
(mainly around March). This paper utilizes OIB measure-
ments from 2012 to 2015, during which the measurements
include surface temperature of the sea ice cover. The prod-
uct is organized into tracks and includes along-track mea-

Figure 2. Data match between OIB and SMOS data. SMOS TB
product is provided on the 12.5 km EASE grid (shown by blue rect-
angular cells). However, the inherent resolution of SMOS TB is
of about 40 km. The red and black line represents the OIB track.
Therefore, in order to accommodate the resolution differences, OIB
samples that reside within the nine cells (red) are considered to be
of equal contribution to the TB value at the central EASE grid cell
(outlined by the thick blue line).

surements of total (or snow) freeboard, surface temperature
and snow depth. Due to the nature of the airborne mea-
surements, the observations are limited to a narrow swath
on the order of 100 m. Snow freeboard products are pro-
duced from Airborne Topographic Mapper (ATM) laser al-
timeter (Studinger, 2010). Sea ice thickness is retrieved from
snow freeboard (denoted FBs) and snow depth (denoted hs),
which is measured by the University of Kansas’ snow radar
(Leuschen, 2014). Surface temperature is determined from
the IceBridge KT-19 infrared radiation pyrometer dataset
(Shetter et al., 2010). There is also accompanying sea ice
type information, which is from EUMETSAT OSI-SAF sys-
tem (Aaboe et al., 2016). Therein, the OIB Level-4 product
IDCSI4 is adopted (Kurtz et al., 2013) for 2012–2013 and the
remaining OIB data for 2014–2015 are from IDCSI2 Quick-
look product, which is also available at NSIDC DAAC. Both
of these datasets are 40 m in resolution in the along-track di-
rection.

2.2 Data usage protocols

Due to the difference between OIB and SMOS data in both
temporal and spatial coverage, we outline the following pro-
tocols of using the two datasets. OIB and SMOS data are
taken from the same day. Spatially, for each OIB flight track,
we locate all the EASE grids that contain OIB measurements.
Figure 2 shows a typical case. Since OIB measurements are
of a small swath, we consider the OIB data (of 40 m reso-
lution) as samples of the underlying sea ice cover that con-
tributes to a single SMOS TB measurement. However, be-
cause the inherent resolution of SMOS is about 40 km and
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the daily gridded field is used in this study, we approximate
the correspondence of OIB and SMOS TB by considering
OIB measurements in the adjacent 3 × 3 cells (the red seg-
ment in Fig. 2) of equal contribution to the SMOS TB at the
central cell (the one bounded by thick blue lines in Fig. 2). In
total, the nine cells cover an area of about 37.5 km× 37.5 km,
which is coherent with the physical resolution of SMOS data.

It is worth noting that the area as covered by a single scan
of the OIB track consists of less than 5 % of the total area
that contributes to the SMOS TB. Therefore, we only treat
the OIB data as samples of the underlying sea ice cover. The
OIB sample count (denotedM) ranges from several hundreds
to over 1000. The mean value of M is about 700, but there
exist certain areas that are scanned more extensively, which
correspond to large values of M . Figure A1 shows the distri-
bution of M for all available OIB data.

In order to exclude the potential effect of insufficient sam-
pling or the inhomogeneity of the sea ice cover, we further
exclude the following data for the analysis and evaluation.
First, if an area is under-sampled by OIB (M < 100), it is
not considered for further analysis. Second, we exclude the
cases in which a single SMOS TB corresponds to OIB sam-
ples with different sea ice types (i.e., mixed MYI and FYI).
Third, we also exclude the cases involving sea ice leads as
detected by the sea ice lead map in Willmes and Heinemann
(2015a) or sea ice concentration lower than 1 according to
Cavalieri et al. (1996). The purpose of these treatments is to
rule out the factors that may compromise the quality of the
OIB samples and allow focus on the discussion of the re-
trieval algorithm.

The snow freeboard as measured by OIB and the SMOS
TB is used as the input to the retrieval. The mean snow depth
(hs) and mean sea ice thickness (hi) among OIB samples are
used for verification of the retrieval. Additionally, since we
assume the underlying sea ice cover as homogeneous within
the retrieval scale (within nine cells) and treat OIB measure-
ments as samples to it, we also use the M measurements of
snow depth to study the statistics of the snow depth and its
covariability with snow freeboard.

2.3 L-band radiation model

The L-band (1.4 GHz) radiative property of the sea ice cover
is characterized through numerical modeling based on Burke
et al. (1979). The model was originally designed for the mod-
eling of radiative transfer of the X- and L-band soil moisture.
In Maaß et al. (2013b), this model is applied to sea ice and
further used for the retrieval of snow depth over thick sea
ice. In these works, a simple one-layer formulation is used
for both the sea ice and the snow cover over it. In order to
better characterize the radiative properties of the sea ice, in
this article we use a multi-layer formulation of the model
with sea ice type-dependent vertical salinity and tempera-
ture profile (Zhou et al., 2017). The temperature profile in
the vertical direction is linear in either the snow cover or the

sea ice, assuming homogeneous thermal conductivity within
the snow or the sea ice. Therefore the temperature in each
sea ice or snow layer can be fully decided given the parame-
ters of thermal conductivity, the ice bottom temperature (as-
sumed to be−1.8 ◦C) and the snow surface temperature. The
salinity profile of FYI differs from that of MYI. For FYI, the
salinity of all layers of the sea ice all equals the bulk salin-
ity, which decreases with the sea ice thickness. For MYI, a
surface-drained profile is adopted to reflect the effect of sum-
mer melt and flushing. Figure 3a shows the sea ice salinity
profiles under the different sea ice types or thickness. The di-
electric properties, the emissivity of the layers and the overall
radiative properties of the sea ice cover are modeled, follow-
ing Kaleschke et al. (2010) and Maaß et al. (2013b). The con-
vergence of the modeled TB with respect to the layer count is
witnessed, which is consistent with the study in Maaß et al.
(2013b). In Zhou et al. (2017), it is demonstrated that the
multi-layer treatment and the salinity profile MYI yield good
fit between the simulated TB and SMOS TB. Appendix A
covers details of the model and the verification with OIB and
SMOS data. Figure 3c and d show the modeled TB under typ-
ical sea ice parameters for FYI and MYI under typical win-
ter Arctic conditions (surface temperature of −30 ◦C). The
green contour lines are constant FBs lines. With the thick-
ening of sea ice cover, the value of TB increases and satu-
rates when hi is large enough (larger than 2.5 m). The value
of TB is not monotonic with respect to FBs, and two so-
lutions are possible for certain value combinations of snow
freeboard and TB. This results in the potential problem of ill-
posedness of the retrieval with realistic observational data, as
is discussed in Sect. 3.2.

In order to match the protocol of the SMOS TB data prod-
uct, we also simulate the mean of horizontal and vertical
polarization TB from 0 to 40◦. We consider the correspon-
dence between a single TB value from SMOS and the arith-
metic mean of all the M TB values simulated by the radi-
ation model using the M corresponding OIB samples (each
with sea ice thickness, snow depth, surface temperature and
sea ice type). Figure 3b shows the comparison of modeled
TB and SMOS TB, by using all available data. The least
squares (LSQ) fit line (dashed line) and the LSQ fit line with
the constraint that the slope be 1 (dotted line) are shown.
The root mean square error (RMSE) in modeled TB as com-
pared with SMOS data is about 3.1 K. The R2 value for the
second fit is 0.54 with an intercept of −1.637 K, which is
treated as a model bias and canceled in further studies. As
noted in Sect. 2.2, there is potentially insufficient sampling
of OIB data, so we further consider areas with more exten-
sive OIB sampling. Specifically, cells with large values of
sample count M (over 95th percentile) are considered to be
more thoroughly scanned spatially, and the RMSE of TB for
these cells drops to 1.41 K. Figure A2 shows the relation-
ship between RMSE of TB to the value of M , which demon-
strates that the lack of sufficient spatial coverage is an im-
portant source for the difference between the modeled TB
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Figure 3. L-band radiation model. Panel (a) shows sea ice salinity profile for FYI (dotted lines) and MYI (solid line). The vertical axis (z)
is normalized with respect to the sea ice thickness. The comparison of the simulated TB based on OIB data and the observed SMOS TB is
presented in panel (b). Blue triangles represent FYI, while red circles are MYI. The dashed (dotted) line is the least squares fit (least squares
fit under the constraint that slope is 1). The root mean square error of TB is 3.1 K. Panels (c) and (d) show the modeled TB under typical
sea ice parameters (hi and hs), assuming Arctic winter conditions (surface temperature of −30 ◦C). The green lines represent constant snow
freeboard lines.

and the SMOS observation. Based on the aforementioned
RMSE of 1.41 K for well-surveyed regions, we only consider
the retrieval for cells with an TB error within 1.5 K for fur-
ther studies. In all 412 TB cells are available, containing 35
OIB tracks and 321 168 OIB measurements. They account
for about 50 % of all available TB cells. We consider this a
limitation of combined usage of OIB and SMOS data, and
the retrieval with actual satellite laser altimetry and L-band
TB can be free from this limitation through better altimetric
scanning and wider swath as compared with OIB.

2.4 Isostatic equilibrium model

Apart from the L-band radiation model, the other model as
used by the retrieval is the equilibrium model based on the
buoyancy relationship. Under certain assumptions of the sea
ice density (denoted ρice), seawater density (denoted ρwater),
snow density (denoted ρsnow) and the equilibrium state, the
sea ice thickness, snow depth and snow freeboard FBs are
constrained according to Eq. (1). The sea ice thickness can

be derived given the snow depth, according to Eq. (2). This
model is widely applied for both radar and laser altimetry for
the retrieval of sea ice thickness.

ρice ·hi+ ρsnow ·hs = ρwater · (hi+hs−FBs) (1)

hi =
ρwater

ρwater− ρice
·FBs−

ρwater− ρsnow

ρwater− ρice
·hs (2)

In this study, ρwater and ρice are taken to be 1024 and
915 kg m−3, which are derived from field measurements dis-
cussed by Wadhams et al. (1992), and ρsnow is 320 kg m−3,
derived from Warren et al. (1999).

3 Retrievability analysis

Under the observational constraints of TB and FBs, both
sea ice thickness and snow depth over sea ice can be re-
trieved (Xu et al., 2017). Figure 3c and d show TB as simu-
lated by the radiation model (Sect. 2.3 and Appendix A) un-
der a range of sea ice parameters. Specifically, the constant
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Figure 4. Statistics of snow depth from OIB at the local scale of retrieval. Panel (a) shows the mean and the ±1 standard deviation of the
snow depth within each snow freeboard bin (from 0 to 1.5 m by an interval of 5 cm), shown by lines and shaded areas for four realistic cases
of OIB. Panel (b) shows the nonlinear fitting of snow depth over snow freeboard (Eq. 3) under representative s values (0.71 for FYI and 0.95
for MYI) and various values of α. Solid color lines are for MYI and dashed ones for FYI. The solid black line is y = x.

snow freeboard lines (with freeboard values) are shown. With
the observed TB and the corresponding observation of FBs,
the values of sea ice thickness and snow depth can be at-
tained through a solving process that involves the two afore-
mentioned forward models. The theoretical retrieval problem
(shown in Fig. 3) is studied in Xu et al. (2017), with treatment
of ill-posed cases which involve two potential solutions.

For the retrieval with actual observational data, the resolu-
tion difference between the two types of observations should
be accounted for. Previously in Sect. 2.2, we used a high-
resolution altimetry scans as samples for L-band passive ra-
diometry, which is of relatively coarser resolution. In this
section we further analyze the statistical covariability be-
tween hs and FBs on the scale of retrieval. Under the context
of retrieval, we base the analysis with the freeboard measure-
ments as a priori and focus on how the snow depth changes
with freeboard in a statistical sense. For each TB measure-
ment, the multiple (M) OIB samples are subjected to statis-
tical analysis, which shows that among these samples there
exists statistically significant correlation between FBs and hs,
which can be better characterized by a nonlinear fitting. Fur-
thermore, the effect of the covariability on retrievability is
analyzed in Sect. 3.2.

3.1 Covariability analysis based on OIB data

For the covariability between FBs and hs, we choose the na-
tive resolution of the OIB product (40 m) as the spatial scale
for analysis. Each TB corresponds to multiple (M) OIB sam-
ples, with each sample containing the measurement for both
FBs and hs. We divide these samples into FBs bins, with each
bin covering 5 cm. In total there are 30 bins, covering the
range of 0 to 1.5 m. For samples in each bin, we compute
the percentiles and the mean value of hs. Figure 4a shows
the mean hs and the ±1 standard deviation range and their

relationship with FBs, for four representative TB points. Fur-
thermore, we carry out least squares linear fitting (weighted
according to sample count in each bin) between FBs of the
bins and the corresponding mean hs in each bin. Among all
available data, there is statistically significant positive corre-
lation between hs and FBs for over 90 % of all points. The
values of R2 are in the range of 0.06 and 0.89 (95 % per-
centile), with the mean value of R2 as 0.53. This indicates
that there is consistent covariability between snow depth and
snow freeboard across Arctic sea ice cover.

However, for both FYI and MYI ice, there is saturation of
the mean hs with respect to FBs. Besides, in the Arctic in-
undation is generally uncommon (i.e., hs < FBs). In order
to accommodate these characteristics, we propose a nonlin-
ear fitting, as shown by Eq. (3). The parameters α and β are
fitted according to observations. According to the equation,
the value of hs saturates to α · π/2 when FBs is large, and
the value of α · β (denoted s), which is the slope of the func-
tion at FBs = 0, should be lower than 1 in order to avoid any
inundation.

hs(FBs)= α · arctan(β ·FBs) (3)

Using Eq. 3, the overall quality of the fitting for all avail-
able local OIB segments is improved, with mean value of
R2 rising from 0.53 to 0.67, and the 95 % percentile of R2

rises to 0.23 and 0.92, respectively. Detailed distribution of
the fitted parameters for all OIB data is shown in Appendix B
(Fig. B1 for FYI and Fig. B2 for MYI). Based on statistics
of all the available OIB data, the value of s for the local
OIB segment is in the range of 0.49 and 0.96 (95 % per-
centile) with a single mode distribution for both MYI and
FYI (Fig. B1c and B2c). For FYI, the mean value of s is 0.71
and for MYI 0.95, which implies a generally thicker snow
cover over MYI. Among all the local OIB segments, 80 % of
them witnessed a value of s lower than 1.
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Figure 5. Typical distributions of FBs and the range of mean hs for 0 < α < 1. Panel (a) shows the four distributions (two for FYI and two
for MYI) and the corresponding mean value of FBs. Global values of s for FYI and MYI are adopted. For these four distributions, panel (b)
shows the mean hs for the range of α between 0 and 1. Mean hs increases monotonically with α and saturates when α is large.

Table 1. Typical scenarios for retrievability studies. The mean sea ice thickness (hi), mean snow depth (hs), mean snow freeboard (FBs),
observed TB from SMOS and the simulated TB from forward radiation model are shown. Scenarios I and II are FYI, and scenarios III, IV
and V are MYI.

Ice type Scenario hi (m) hs (m) FBs (m) TB (K)

Simulated Observed

FYI
I 1.28 0.12 0.2212 245.84 246.38

II 2.25 0.20 0.3790 242.92 243.14

MYI
III 2.46 0.17 0.3807 245.29 245.46
IV 3.01 0.32 0.5419 246.66 246.61
V 4.13 0.31 0.6509 245.84 246.38

Furthermore, we consider the value of s to be stable across
either FYI or MYI sea ice and choose these values as univer-
sal parameters for the design of the retrieval algorithm. Fig-
ure 4b shows fitting function of snow depth over snow free-
board based on these representative values of s under various
values for α.

3.2 Effects of covariability on retrievability

We evaluate the covariability and its effect on retrieval from
several aspects. We choose five realistic retrieval scenarios
among all the OIB and SMOS data, with two of them repre-
senting FYI retrieval and three of them for MYI. As shown
in Table 1, they represent typical retrieval problems for Arc-
tic sea ice. Besides, the simulated TB values by the radi-
ation model is close to the corresponding SMOS TB val-
ues (within 1.5 K). Based on these scenarios, we examine
whether it is possible to retrieve the actual sea ice thickness
and snow depth, with or without the covariability. Firstly we
ignore the covariability and assume a flat snow cover: for the
M OIB samples, we assume that the snow depth is uniform.
For the retrieval problem, since the directly observed values
are freeboard samples (FBs|m, where m is the index of the

samples, and 1 ≤ m ≤ M), we carry out the scanning of the
(uniform) snow depth hs from 0 m (snow free) to 1 m (suffi-
ciently deep). Under a certain value of hs, we retrieve the sea
ice thickness hi|m for each FBs|m with Eq. (2), based on the
current value of hs. Then the TB value for this sample (TB|m)
can be calculated according to the L-band radiation model,
with hi|m, hs and surface temperature Tsfc|m. The mean TB
value is then computed as the arithmetic mean of all TB|m’s,
for the current value of hs. For any OIB sample, if the value
of freeboard is smaller than the current value of hs, in order to
avoid inundation, the snow depth for this sample is assumed
to be the same as FBs. If the number of samples that witness
potential of inundation over 50 % ofM , we stop the scanning
even if hs has not reached 1 m.

In order to incorporate the effect of covariability, we adopt
either the global value of s (0.71 for FYI and 0.95 for MYI)
or the locally fitted value of s (specific to each scenario) and
carry out the retrieval. Figure 5a shows four typical distri-
bution of FBs, and Fig. 5b shows a range of values for α (0
to 1) and the resulting mean value of hs for the four typical
distributions. For the range of 0 to 1, the resulting mean hs
covers a continuous range for each distribution. For each dis-
tribution, when α is very small, the corresponding hs is very
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Figure 6. Retrievability study with different retrieval scenarios. The horizontal solid (dotted-dashed) lines are the SMOS (modeled) TB. The
vertical solid lines represent the values of the mean snow depth from OIB observation. The black dashed curves denote the values of TB
generated by scanning of hs under the flat snow cover assumption, and the vertical dashed lines denote the values of hs that result in 50 %
OIB samples to be inundated. The red (blue) dashed curves (with the corresponding mean snow depth) are the values of TB generated by
scanning of α with the local (global) values of s as in Eq. (3).

small for whole range FBs, resulting in a very small value
of mean hs. Furthermore, the value of mean hs approaches 0
when α approaches 0, which in effect corresponds to “bare
ice”. With the grow of α, there is a monotonous increase in
the mean hs; and when α is large enough, the mean hs sat-
urates. For all four FBs distributions, we consider that the
resulting mean hs is reasonable for the range of α. There-
fore, the retrieval of snow depth is attained by locating the
proper value of α. Due to the potential of double solution in
the retrieval, the solving of α is attained by a scanning pro-
cess that covers the reasonable range for α. The scan starts
from 0.001 and steps by 0.01, and it is limited to a large value
that yields saturation for mean hs. With each scanned value
of α, a corresponding value for β, can be computed as s /α,
and the snow depth hs|m for each sample can be computed
with Eq. (3). Then the hi|m, the TB values for each sample
can be computed, as well as the mean snow depth and mean
TB.

We record the (mean) snow depth and the corresponding
mean TB across the scanning process. Figure 6 shows the
results of scanning for the five scenarios in Table 1. Note
that for the lines that represent scanning of α (i.e., involv-
ing covariability), the x axis is the resulting values of mean
hs, not α. The observed TB and the simulated TB (with OIB

data) are shown by solid and dot-dashed horizontal lines, re-
spectively. Besides, the observed mean snow depth and the
50 % inundation with flat snow cover are shown by solid and
dashed vertical lines, respectively. The simulated TB with flat
snow cover (black dashed curve in each subfigure) is always
lower than that with covariability information (blue dashed
curves for results with global s and red ones for those with
local s). For all the scenarios, the TB values that are attained
through scanning can reach the observed TB with the incor-
poration of covariability, while the values of TB in two sce-
narios (III and IV) fail to reach the observation with the flat
snow cover assumption. This implies that with the flat snow
cover assumption, there is no solution to the retrieval prob-
lem. We further examine the other three scenarios; the so-
lutions of the retrieval problem reside at the cross point of
the scanned TB curves and the horizontal bars that represent
observational TB values. The solutions of mean snow depth
under the flat snow cover assumption are always larger than
the observed mean snow depth by over 5 cm.

For the comparison between the covariability incorporated
scanning with local s and global s, we show that for scenar-
ios I, II, III and IV the solutions of the two scannings are
close to each other (within 2 cm). For scenarios II, III and
IV, the solutions as produced by the scanning is close to the
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Figure 7. Flow chart for retrieval algorithm. Two phases are marked out. The red box includes the scanning process for the potential solutions
to the retrieval problem, and the blue box shows the iterative binary search for the solving process.

observed snow depth. The differences between the solutions
produced by scanning and the observed snow depth are 5 cm
or larger for scenarios I and V, while the scanning with local
s produces smaller errors. It is worth noting that for the ac-
tual retrieval process, the local value of s is not available, and
only the global value of s is usable. Lastly, for scenario III,
two potential solutions exist (two crossing points between
the TB scanning curve and the observational TB). Without
extra observational data during retrieval, it is not possible to
judge which solution is the true (or better) one. Therefore
the retrieval algorithm should be able to locate both possible
solutions.

The covariability as observed with OIB data plays an im-
portant role in the retrievability of the sea ice parameters.
Also with OIB data, we extract the statistical relationship
(Eq. 3) that characterizes the covariability which can be in-
corporated in the retrieval. However, during retrieval, the pa-
rameter s is generally not available for the local area, and
the global values of s (for FYI and MYI) as computed from
high-resolution OIB data can be adopted.

4 Retrieval algorithm and evaluation

With the statistically significant covariability, we design the
retrieval algorithm for sea ice thickness and snow depth that
includes two distinctive phases. The overall structure of the
algorithm is similar to the theoretical retrieval algorithm in

Xu et al. (2017). The incorporation of covariability is further
integrated, based on the nonlinear fitting in Eq. (3) and the
fixed value of s for both FYI and MYI derived from OIB
data. The first phase involves the scanning of possible snow
depth configurations. This phase is in effect carried out by
the scanning of the value of α from 0.001 to 3 (or sufficiently
large). A possible solution is detected between two adjacent
values of α, when the TB values as generated with these two
values of α are on different sides of the observed TB. During
the second phase, all the possible solutions are then attained
with an iterative binary search of α. All possible solutions
are reported by the retrieval algorithm. The outline of the al-
gorithm is presented in Fig. 7, with the two phases marked
out by red and blue boxes, respectively. We also construct
a reference retrieval algorithm based on the flat snow cover
assumption, for which the scanning is over the snow depth
instead of α. The details of this reference algorithm is omit-
ted for brevity.

For the typical scenarios in Table 1, we carry out the re-
trieval for the mean sea ice thickness (hi) and the mean snow
depth (hs) using the standard algorithm with either the global
or the local values of s, as well as the reference algorithm.
Table 2 shows the comparison of the retrieval results and
observations. The reference algorithm (with flat snow cover
assumption) consistently performed worse than the standard
algorithm. For scenarios I and IV, it failed to attain any solu-
tion. For the standard algorithm, small error in both hi and hs
is attained with the local values of s specific to each scenario,
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Table 2. Retrieved results (hi and hs, in units of meters) for five scenarios under different retrieval algorithms. In scenarios II, IV and V, the
retrieval with flat snow cover assumption is unsuccessful. The values in the brackets for scenario V denote the other (possible) solution for
sea ice parameters.

Scenario hi (m) hs (m)

Observed Retrieval Retrieval Retrieval Observed Retrieval Retrieval Retrieval
w/flat w/local s w/global s w/flat w/local s w/global s

snow cover snow cover

I 1.28 – 0.95 0.93 0.124 – 0.167 0.171
II 2.25 2.00 2.23 2.30 0.202 0.263 0.207 0.195
III 2.46 – 2.50 (1.69) 2.45 (1.88) 0.172 – 0.168 (0.293) 0.175 (0.263)
IV 3.01 – 3.25 2.38 0.321 – 0.285 0.419
V 4.13 3.88 4.09 4.11 0.308 0.350 0.313 0.310

as compared the retrieval with the global values of s. Besides,
for scenario III for which two solutions are possible, the re-
trieval algorithm addresses both of them. The retrieval results
are consistent with the retrievability analysis in Sect. 3.2.

We further carry out verification of the retrieval algorithm
in two aspects. First, by using all available OIB data, we
simulate the retrieval problem with laser altimetry measure-
ments and verify the retrieved hi and hs against OIB mea-
surements. Section 4.1 covers the retrieval and analysis. Fur-
thermore, we construct several representative retrieval sce-
narios in Sect. 4.2 and analyze the uncertainty in the retrieved
parameters and carry out attribution of the uncertainty to in-
put parameters of the retrieval.

4.1 Large-scale retrieval

For the systematic verification of the proposed algorithm,
we carry out the retrieval with all the available OIB data
(as mentioned in Sect. 2.3) from 35 OIB tracks and 412
SMOS TB measurements, which correspond to 412 retrieval
cases. For each SMOS TB, the corresponding samples (snow
freeboard, surface temperature and sea ice type) from OIB
dataset are used as the input for the retrieval. The retrieval
with the flat snow cover assumption (the reference algorithm)
is only successful for 50 cases, which accounts for about
12 % of available cases. For comparison, the (standard) algo-
rithm achieves retrieval for 391 cases (95 %) with the global
s values and for all the TB values with the locally fit s val-
ues. Figure 8 shows the comparison of retrieved mean sea
ice thickness and snow depth with observations. Figure 8a
and b shows the results for hi and hs, based on (1) simulated
TB (as computed from the radiation model) and (2) the local
value of s. This represent the “idealized” retrieval problem in
which there exists no extra uncertainty. As shown in Fig. 8a,
the LSQ fit for hi (dash line) features a R2 value of 0.966,
while the LSQ fit under the extra constraint on slope (dot-
ted dash line) features a R2 value of 0.964. For snow depth
(Fig. 8b), the R2 values for the two fittings are both 0.844.

This indicates that the retrieval is in good agreement with the
observations.

For the actual retrieval problem for which the local value
of s is unknown, and the observational TB values from
SMOS are used, Fig. 8c and d show the evaluation for hi
and hs, respectively. The fitting quality (in terms of R2) for
sea ice thickness is as high as 0.89 and that for snow depth
is 0.637. It is worth noting that these results are achieved
with only statistical data derived from large-scale OIB sur-
veys. Furthermore, if the retrieval is based on (1) observed
TB from SMOS and (2) the locally fitted value of s, the
R2 values for the fitting are 0.91 and 0.65 for sea ice thick-
ness and snow depth, respectively, with virtually no change
in the fitting lines (not shown). There is minor increase in
quality (0.91 versus 0.89 and 0.65 versus 0.637) and a rela-
tively large gap to the “idealized” retrieval. As a comparison,
we also carry out retrieval with the TB with forward model
and the local values of s, and the R2 for fittings between the
retrieved and the observed parameters for sea ice thickness
and snow depth are 0.96 and 0.84, respectively. This indi-
cates that the difference (or error) of the modeled and the ob-
served TB plays an important role in affecting the quality of
the retrieval. The discrepancy between the observed TB and
the modeled TB may arise from (1) the imperfect radiation
model, including its formulation as well as the model param-
eters, or (2) the mismatch between the altimetry scans and
L-band passive observations, as introduced in Sect. 2.2. The
areas with more extensive OIB scans are shown of lower TB
error (see Fig. A2), indicating that the error in the retrieved
parameters can be potentially reduced with better altimetry
coverage.

For comparison, we also carry out the retrieval which
only involves TB and the mean value of FBs. This retrieval
problem ignores the resolution difference between altimetry
scans and L-band radiometry and generally corresponds to
the theoretical retrieval problem analyzed in Xu et al. (2017).
Specifically, for the use of OIB data, the mean value of M
samples of FBs is computed and further combined with TB
for the retrieval of a single value for both hi and hs. Since
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Figure 8. Large-scale retrieval of mean sea ice thickness (a, c) and mean snow depth (b, d) and verification with OIB observations. In each
panel, blue triangles (red rectangles) denote FYI (MYI), the solid line is the 1 : 1 line and the dashed (dashed dotted) line represents the
linear fitting (linear fitting line with the constraint that the slope be 1). The quality of fittings in terms of R2 are also shown. Panels (a, b)
represent the comparison results for the retrieval with modeled TB and the local values of s. Panels (c, d) represent the results with SMOS
TB and the global values of s as derived from OIB data.

only the mean FBs is involved in the retrieval, covariability
does not play a role in the retrieval. By using the same SMOS
and OIB data as the evaluation in Fig. 8, the retrieval yields
R2 of 0.78 and 0.50 for hi and hs (fitting between the re-
trieved and the observed parameter). For comparison, under
the realistic retrieval results (Fig. 8c and d), the quality of re-
trieval is much improved for both hi (R2 from 0.78 to 0.89)
and hs (R2 from 0.50 to 0.64). This demonstrates that the
high-resolution altimetry samples and the accompanying co-
variability information play an important role in improving
the quality of the retrieval.

Based on the retrieval with large-scale observational data,
the proposed algorithm achieves effective retrieval of both
sea ice thickness and snow depth, by using simultaneous re-
mote sensing of the sea ice cover, i.e., laser altimetry and
L-band passive microwave sensing. The statistics of snow
depth and its covariability with snow freeboard on the spa-
tial scale of retrieval play an important role in improving the

well-posedness of the retrieval problem as well as the quality
of the retrieved parameters.

4.2 Uncertainty analysis

In order to assess the uncertainty of the retrieved parame-
ters, we further design four realistic retrieval scenarios from
OIB and SMOS data listed in Table 3a. Due to the nonlinear
relationship between sea ice parameters and TB, we cannot
directly compute the uncertainty in hi or hs. Instead, Monte
Carlo (MC) simulation is adopted. For each scenario in Ta-
ble 3a, four sets of MC simulations are constructed, each
containing: (1) random perturbations to TB only, (2) random
perturbations to FBs only, (3) random perturbations to s only,
and (4) random perturbations to TB, FBs and s altogether.
Each set contains 1000 random sampling to these parame-
ters.

The perturbations to TB follow normal distribution and
SMOS dataset (in terms of standard deviation of the uncer-
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Table 3. Uncertainty estimation for typical retrieval scenarios.

(a) Typical scenarios for uncertainty estimation

Scenario Ice type hi (m) hs (m)

I FYI 1.307 0.127
II FYI 2.549 0.171
III MYI 3.009 0.265
IV MYI 4.736 0.348

(b) Results

Scenario Relative Perturbations
uncertainty

TB FBs s All

I
σhi/hi 9.44 % 15.75 % 8.19 % 15.30 %
σhs/hs 14.38 % 25.08 % 13.06 % 24.21 %

II
σhi/hi 4.90 % 4.36 % 3.42 % 5.60 %
σhs/hs 11.33 % 9.99 % 7.89 % 12.93 %

III
σhi/hi 11.15 % 12.23 % 5.02 % 10.24 %
σhs/hs 19.49 % 21.41 % 8.83 % 17.88 %

IV
σhi/hi 6.62 % 5.19 % 4.71 % 6.37 %
σhs/hs 13.92 % 10.94 % 9.92 % 13.28 %

tainty). The perturbations to the M values of FBs are based
on OIB data specification and follow log-normal distribution.
The perturbations to s are specific to sea ice type (FYI or
MYI) and based on the statistics of s as derived from all
OIB data. As shown in Appendix B, the distribution of s
can be well characterized by beta distribution for both FYI
and MYI. The fitting to beta distribution is then carried out
for both FYI and MYI according to Eq. (4), where a, b and
const are fitted parameters by using OIB data at 40 m resolu-
tion (see Fig. B3). For FYI, a, b and const are 4.31, 2.00 and
1.00, respectively, and for MYI are 4.25, 2.06 and 1.2.

f (x|a,b,constant)=
const
B(a,b)

x(a−1)(1− x)(b−1) (4)

The perturbations to s follow the fitted beta distribution.
Furthermore, the perturbations to TB, FBs and s are treated
as independent. Each MC simulation (of 1000 simulations)
contains a set of perturbed input parameters and corresponds
to a retrieval problem. Based on the results from the 1000
simulations, the uncertainty of the retrieved hi and hs are
computed by biased standard deviation estimation with re-
spect to the original retrieval which involves no perturbation.
Table 3b shows the relative uncertainty of hi and hs for each
experiments for all scenarios. First, the relative uncertainty
for hi or hs is at most about 25 %. Also, all scenarios show
that s plays a minor role in terms of uncertainty, as compared
with TB or FBs. TB and FBs play a comparable role in the
uncertainty of the retrieved parameters. Moreover, for both
FYI and MYI, the uncertainty in the retrieved hi and hs is
relatively lower for thicker ice and deeper snow cover. The
uncertainty of TB (or FBs) is not correlated spatially and that
of s is based on basin-scale statistics from OIB. Therefore,

the uncertainty of the retrieved hi (or hs) is not spatially cor-
related, resulting in effective reduction of the uncertainty in
the sea ice volume (or snow volume).

5 Summary and discussion

In this study, we introduce a new algorithm for retrieving
multiple Arctic sea ice parameters based on a combination
of L-band passive microwave remote sensing and active laser
altimetry. Two physical models, the L-band radiation model
and the buoyancy relationship, are adopted to constrain the
sea ice thickness and snow depth. They are used as forward
models during an iterative retrieval process that solves the sea
ice parameters that satisfy the observed L-band TB and snow
freeboard values. Specifically, according to high-resolution
observations, there is statistically significant covariability be-
tween the snow depth and the snow freeboard. This informa-
tion of covariability is further incorporated in the retrieval
algorithm, and it is demonstrated that the covariability plays
a key role in the retrievability. Specifically, a nonlinear fit-
ting that characterizes the covariability is derived from OIB
data, and a parameter (initial slope of the fitting function) is
considered invariant for FYI and MYI and further adopted
by the retrieval algorithm. Verification with available OIB
data shows that both sea ice thickness and snow depth are
retrieved, with the error in both parameters mainly arising
from the mismatch between modeled and observed TB val-
ues. This algorithm can be applied to the large-scale retrieval
of sea ice thickness and snow depth using concurrent L-band
satellite remote sensing and satellite altimetry of the sea ice
cover such as Abdalati et al. (2010).

5.1 Difference with existing retrieval algorithms

In traditional (laser) satellite altimetry, the retrieval of sea
ice thickness mainly relies on (adapted) climatological snow
depth or data as derived from reanalyses, which may contain
unconstrained uncertainty due to model biases and missing
physical processes. Besides, these snow depth data usually
lack fine-scale details that match the resolution of satellite
altimetry, such as the covariability characteristics. In con-
trast, the retrieval of snow depth using L-band SMOS data
as in Maaß et al. (2013b) relies on the a priori knowledge of
the thickness of the (thick) sea ice. Contrary to these exist-
ing retrieval algorithms, the proposed algorithm carries out
retrieval of both sea ice thickness and snow depth, with the
concurrent active and passive remote sensing of the sea ice
cover. Since no climatological snow depth or any other de-
rived snow data are used in the algorithm, the retrieved sea
ice thickness does not suffer from the potential lack of effi-
cacy of these data.
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5.2 Covariability analysis

In Kwok et al. (2011), statistical analyses are carried out be-
tween snow depth and snow freeboard, which also show co-
variability between the two. As also noted in Kwok et al.
(2011), the derivation of these two parameters is measured
with independent instruments by OIB. The statistically sig-
nificant relationship as represented by covariability is due to
physical processes relating to the snow loading and its effects
on the total freeboard. However, it is worth noting that the
scale and the resolution as adopted in Kwok et al. (2011) are
about 400 and 4 km, respectively. They are both much larger
than those used in this study (about 40 km and 40 m). While
the analysis in Kwok et al. (2011) is carried out on coarser
spatial scales, our work focuses on the spatial scale that is rel-
evant to the retrieval of sea ice parameters. We demonstrate
that on this relatively small spatial scale, there still exists co-
variability between snow depth and snow freeboard.

5.3 Uncertainty estimation related to model
parameters

Besides the input parameters to the retrieval (TB, FBs and s),
model parameters also play an important role in modulating
the uncertainty for retrieval (Zygmuntowska et al., 2014; Xu
et al., 2017). For this study, we adopt constant parameters for
density values following protocols of OIB, mainly for the di-
rect comparison with OIB dataset. However, their effect on
the uncertainty of retrieved parameters should be accounted
for in a systematic approach, similar to Xu et al. (2017). MC
simulations can be adopted for the quantification of the un-
certainty through perturbations to both input and model pa-
rameters.

5.4 Outlook of satellite-based retrieval

The proposed retrieval method is the basis for the retrieval of
sea ice parameters with data from concurrent satellite cam-
paigns. Although there was no concurrent L-band satellite
observation with the ICESat campaign, there are candidate
satellite campaigns such as WCOM (Shi et al., 2016), which
provides concurrent L-band observation with the planned
ICESat-2 campaign. For the study with satellite data, there
are several practical issues. First, the snow surface tempera-
ture is provided by airborne sensors in OIB but is not gener-
ally available with laser altimetry. Several data sources serve
as candidate data for the concurrent surface temperature
field, such as reanalysis data (Dee et al., 2011), a MODIS-
based product (Hall et al., 2004). Second, there is small-scale
variability of the sea ice cover such as leads, which were not
considered for the analysis and verification in this study. As
shown in Zhou et al. (2017), the presence of sea ice leads
has a profound effect in lowering the overall TB on the scale
of SMOS observations. Leads can be treated as small-scale
heterogeneity of the sea ice cover, and the incorporation of

lead maps such as Willmes and Heinemann (2015b) effec-
tively reduces the overestimation of TB, as studied by Zhou
et al. (2017). Specifically, the lead map can be adopted by the
retrieval through the integration with the forward radiation
model. Other types of small-scale variability such as mixture
of FYI and MYI, should be also accounted for using sea ice
type maps. Third, the covariability explored in this study is
on the spatial scale of the original OIB data (i.e., 40 m). For
each specific satellite altimetry, we consider the freeboard
measurement the mean freeboard value within a certain spa-
tial range. For ICESat-2, each laser scan dot covers a circu-
lar region of about 70 m in diameter (Abdalati et al., 2010).
The scaling of the covariability should be studied for the spe-
cific resolution of the satellite altimetry. By using 70 m as
the typical resolution of ICESat-2, we deduce the value of
s at this resolution by manual coarsening OIB’s data by av-
eraging adjacent points. In effect, the value of s at 80 m is
computed, which shows a slight decrease of s for both FYI
and MYI. Figure B3 shows the general scaling of s for the
resolution range from 40 to 240 m. Fourth, in order to esti-
mate the uncertainty of the retrieved parameters, the effects
of surface temperature, as well as other data sources (includ-
ing TB, freeboard measurements and the value of s), should
be evaluated in a systematic way. Due to the nonlinear re-
lationship between TB and the sea ice parameters, MC sim-
ulations can be carried out for the quantification of the un-
certainty. Besides, for the historical data from ICESat (Kwok
and Cunningham, 2008) during the first decade of the 21st
century, due to the lack of basin-scale L-band observation for
the Arctic, other passive remote sensing data such as C-band
data from AMSR-E can be exploited in a similar manner for
the retrieval of these historical data.

The native spatial resolution of AMSR-E based C-band
remote sensing product is over 60 km, which is coarser than
that of SMOS L-band data but provides similar, daily cov-
erage for the Arctic. Therefore, the resolution difference be-
tween AMSR-E based C-band data products and ICESat data
should be accounted for in a similar approach as in Sect. 2.2.
Besides, due to the relatively shorter wavelength of C-band
as compared with L-band, the penetration depth of C-band
signal in sea ice cover is potentially shallower, resulting in
more premature saturation of C-band signal to sea ice thick-
ness. Under the assumption of a uniform and dry snow cover,
the relatively long wavelength of C-band and L-band ensures
that the snow cover is “transparent” to the L- or C-band sig-
nal. For L-band and C-band, there is good potential for re-
trieval through the thermodynamical modulation of the sea
ice thickness by the snow cover, as indicated by Maaß et al.
(2013a).

The L-band radiation model as adopted by this article can
also be used for the concurrent retrieval of sea ice parame-
ters with L-band passive radiometry and RA. While laser al-
timetry with ICESat covered the historical era in the 2000s,
CryoSat-2 based RA is an ongoing campaign which started
in early 2010s and overlaps with existing L-band and C-band
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passive campaigns, including SMOS, SMAP and AMSR2.
According to the theoretical study by Xu et al. (2017), the
retrieval that combines RA with L-band data is potentially
free of the ambiguous solutions present in this study. Be-
sides, there also exists resolution differences between RA
(e.g., 300 m for CryoSat-2) and L-band data such as SMOS.
Measurements from RA can be treated as high-resolution
sampling of the sea ice area that corresponds to a single L-
band TB. Furthermore, based on the analysis and methods
proposed in this article, the covariability between snow depth
and sea ice freeboard can be further incorporated in the com-
bined retrieval with RA and L-band passive remote sensing
data.

Data availability. SMOS data are provided by the Integrated Cli-
mate Data Center (ICDC), University of Hamburg, Germany, http:
//icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3b-smos-tb.html
(last accessed: 25 October 2017). OIB and SSM/I sea ice
concentration data are provided by NASA National Snow
and Ice Data Center Distributed Active Archive Center, Boul-
der, Colorado, USA, https://doi.org/10.5067/7XJ9HRV50O57
(last access: 25 October 2017). Daily pan-Arctic sea ice lead
maps for 2003–2015 are provided by Sascha Willmes and
Guenther Heinemann, with links to maps in NetCDF format.
https://doi.org/10.1594/PANGAEA.854411 (last access: 14 March
2018).
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Appendix A: L-band radiation model

The L-band (1.4 GHz) radiation model as used for retrieval
describes the radiation emitted from snow-covered sea ice
that floats over seawater. The model was originally devel-
oped for soil moisture applications in Burke et al. (1979) and
further adopted for sea ice in Maaß et al. (2013b). As intro-
duced in Zhou et al. (2017), improvements to the model are
made to better characterize the vertical structure of the sea
ice that is specific to each sea ice type. Details are provided
below.

A1 General information

The modeling of the radiative properties of the sea ice cover
includes four types of media in the vertical direction: seawa-
ter beneath the sea ice, sea ice, snow cover over the sea ice
and air. The seawater (air) is considered to be semi-infinite
beneath (above) the sea ice cover. The sea ice is further di-
vided into N layers in the vertical direction, with each layer
of the same height. For the snow cover, a homogeneous struc-
ture is assumed, with prescribed parameters such as thermal
conductivity and permittivity. Also, a dry snow cover is as-
sumed, and snow morphology features (such as differentia-
tion between wind slab and depth hoar) and other vertical
structures are not considered. The (SMOS) observed bright-
ness temperature (TB) is assumed to be the multi-angle mean
(0–40◦) TB as radiated from the aforementioned multi-layer
media.

A2 Temperature and salinity structure

The radiation model characterizes the vertical structure of the
sea ice cover by specifying the temperature and salinity of
each layer based on the sea ice type and the snow surface
temperature (Tsurf). The vertical temperature profile is deter-
mined by the overall thermal condition as defined by Tsurf
and the thermal conductivity for sea ice (kice) and that of
snow (ksnow). The bottom of the sea ice is assumed to be at
freezing temperature of −1.8 ◦C (denoted Twater). Based on
observation-based fittings in Untersteiner (1964) and Yu and
Rothrock (1996), kice and ksnow are defined as follows.

kice = 2.034Wm−1 K−1
+ 0.13Wkg−1 m−2 Sice

Tice− 273.15
ksnow = 0.31Wm−1 K−1

In this study, we consider the change of kice within the
sea ice of minor effects and use a bulk value for kice, re-
sulting in a linear temperature profile within the sea ice.
This bulk value is determined by the bulk value of Sice. The
temperature profile is assumed to be continuous through the
media interfaces, and ice temperature is assumed to equal
the snow temperature at the snow–ice interface. Given Tsurf
based on other observations (such as MODIS), the bulk ice
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Figure A1. Distribution of OIB sample count (M).

and snow temperatures Tice and Tsnow can be written as fol-
lows (K = (ksnowhi+ kicehs)

−1).

Tice = Twater+
1
2
K (Tsurf− Twater)ksnowhi

Tsnow =
1
2
(Twater+ Tsurf+K (Tsurf− Twater)kicehs)

Since a bulk value is adopted for both kice and ksnow, given
any Tsurf, the temperature profile is linear within the snow
cover, as well as the sea ice. Then, the temperature of each
layer of the sea ice cover can be computed.

For the salinity, sea ice type is considered with differentia-
tion between MYI and FYI. For FYI, the salinity is assumed
to be homogeneous in the vertical direction and equals the
bulk salinity as prescribed by the sea ice thickness. The bulk
salinity for FYI is in turn adapted from the multi-linear struc-
ture in Cox and Weeks (1974) and defined as follows (where
the ice salinity, denoted Sice, is in ppt).

Sice = 6.08 · e(−5.81·hi)+ 7.409 · e(−0.5228·hi)

With the deepening of the FYI sea ice cover, the bulk salin-
ity decreases, and its minimum value is kept above 1.5 ppt.
In contrast, for MYI, in order to reflect the effect of brine
drainage and flushing during the melt season, a vertical salin-
ity profile is adopted following Schwarzacher (1959). For the
kth sea ice layer (k = 0 for the surface layer of the sea ice),
the mean salinity (Si,k) is prescribed as

Si,k =
1
2
Smax

[
1− cos

(
πza/(z+b)

)]
.

A normalized vertical coordinate (z) is adopted with re-
spect to sea ice thickness, starting from z= 0 for the ice
surface to z= 1 for the bottom of the ice. For layer k,
z= (k− 1/2)/N and the corresponding salinity of the layer
can be computed. N is the total number of ice layers, and
Smax = 3.2 ppt, a = 0.407 and b = 0.573, which are the fitted
parameters from in situ observations of MYI salinity. There-
fore, for MYI, the sea ice salinity ranges from 0 at the top of
the surface (z= 0) to Smax at the bottom (z= 1). The seawa-
ter salinity is fixed at constant 33 g kg−1.
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Figure A2. The relationship of RMSE of TB to OIB sample count
(M). The statistics of RMSE of TB are computed for each sample
count bin (each of 100). Shaded area covers the 5th and 95th per-
centile of the absolute TB error.

A3 Radiative properties

The radiation model describes the radiation emitted from
snow cover, sea ice and seawater; the brightness temperature
at the top of atmospheric (TBTOA) can be described as (Maaß
et al., 2013b)

TBTOA = (1− c) · (TBwater+ (1− ewater) ·TBcosm)

+ c · (TBice+ (1− eice) ·TBcosm)+1TBatm. (A1)

In Eq. (A1), c is sea ice concentration, eice and TBice are
the emissivity and TB of sea ice, ewater and TBwater are the
emissivity and TB of seawater, and TBcosm is cosmic mi-
crowave background radiation, which can be considered as
uniform and constant (2.7 K). 1TBatm is TB from atmo-
spheric contribution ranging from −0.36 to +5.67 K. Emis-
sivity parameters are computed as follows: ewater is based on
the Fresnel equations in different directions of polarization
(Ulaby et al., 1986) and eice is a function of parameters such
as polarization, incidence angle, sea ice thickness, temper-
ature, density, salinity, surface roughness, snow depth and
temperature. Based on Maaß et al. (2013b), the permittivity
of snow (εsnow) is determined by a polynomial fit obtained
from measurements at microwave frequencies ranging be-
tween 840 MHz and 12.6 GHz (Tiuri et al., 1984) as follows.

εsnow =
(

1+ 0.7ρsnow+ 0.7ρ2
snow

)
+ i ·

(
1.59× 106

×

(
0.52ρsnow+ 0.62ρ2

snow

)
·

(
f−1
+ 1.23× 10−14

√
f
)
e0.036T

)
,

where ρsnow is the relative density of snow (compared to wa-
ter), T the temperature of snow in degrees Celsius and f the
microwave frequency. It should be noted that εsnow depends
on the snow wetness, which is not considered by the current
model. Permittivity of sea ice (εice) is confirmed by brine vol-
ume fraction (Vb) using empirical relationship in Vant et al.
(1978).

εice = a1+ a2Vb+ i · (a3+ a4Vb)

Vb is given in ‰, and the values of a1, a2, a3 and a4 follow
Kaleschke et al. (2010). Similar to Maaß et al. (2013b), for
the permittivity of seawater (εwater), the empirical relation-
ship from Klein and Swift (1977) is adopted, and the permit-
tivity of air (εair ) is assumed to be 1. The brine volume frac-
tion Vb can be expressed in the following (Cox and Weeks,
1983).

Vb =
ρiceSice

ρbrineSbrine(1+ k)

Sice is the ice salinity, ρice the ice density, Sbrine the brine
salinity and ρbrine the brine density. ρbrine can be fitted with
Sbrine (in ‰) according to Cox and Weeks (1983).

ρbrine = 1+ 0.0008 · Sbrine

Then the following equation is adopted to relate Sbrine with
Tice (Vant et al., 1978):

Sbrine = a+ b · Tice+ c · T
2

ice+ d · T
3

ice,

where Tice is in ◦C and a, b, c and d are fitted parameters in
Vant et al. (1978). These polynomial approximations agreed
well with the experimental data in Zubov (1963). Also, ρice
can be expressed by ice temperature (Tice: ◦C) in Pounder
(1966):

ρice = 0.917− 1.403× 10−4Tice

Therefore, Vb can be expressed as a function of ρice, Sice
and Tice.

As derived model from Burke et al. (1979), the radiation
model is a non-coherent model. However, the effect of non-
coherency is considered to be mitigated by several factors.
First, with the SMOS observations, there is large variability
of both sea ice thickness and snow depth within the typical
resolution of 40 km. There usually exists large variability of
the sea ice cover within the spatial scale of 40 km (variabil-
ity of hi larger than one-quarter of the L-band wavelength),
which effectively mitigates the effect of non-coherency, as
indicated in Kaleschke et al. (2010). Furthermore, multi-
angle mean of SMOS TB further introduces a range of in-
tegration path of radiations. The multi-layer treatment of the
sea ice is also explored in Maaß et al. (2013b). According to
the study in Zhou et al. (2017), with treatment of the salinity
profile in MYI (i.e., salinity drainage in the top layers), the
modeled TB is more consistent with the SMOS TB.

Under typical winter Arctic conditions (Tsurf =−30 ◦C),
simulated TB over different sea ice type from reformulated
radiation model is shown in Fig. 3c and d, with constant snow
freeboard lines shown.
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A4 Radiation model verification with OIB and SMOS
data

Verification is carried out between OIB data and SMOS, with
specific attention to the effect of better OIB sampling. Due
to the resolution difference between SMOS and OIB (or any
type of satellite altimetry), we consider the case involving
multiple (M) OIB samples and a single SMOS TB. Sec-
tion 2.2 and Fig. 2 provide details of the correspondence
between the two types of observations. Using all OIB data,
Fig. A1 shows the distribution ofM for all the retrieval prob-
lems (each corresponding to an area of 37.5 km× 37.5 km).
The mean value of M is about 700. The RMSE of TB (mod-
eled vs. observed by SMOS) is 3.1 K for all available OIB
data (see also Fig. 3c). If we further limit the computation of
RMSE to the points with large values of M (95th percentile
for M , corresponding to areas with good OIB coverage), the
RMSE drops to 1.41 K. Figure A2 shows the relationship of
TB error and M . As shown, there is a drop in both RMSE
and the maximum error of TB with better spatial coverage
of OIB. The lead information can be further incorporated in
the radiation model (Zhou et al., 2017), which effectively re-
duces the overestimation of TB as caused by refrozen leads
or open water.

Appendix B: Statistical analysis for covariability

We summarize the statistics of the fitted parameters of α, β
and s (s = α ·β) as in Eq. (3), based on all available OIB data.
Figures B1 and B2 show the distribution of these parame-
ters for FYI and MYI, respectively. The original resolution
of OIB dataset (i.e., 40 m) is adopted. Further, the scaling of
the distribution of s is analyzed by manually coarsening the
OIB measurements by averaging adjacent samples. There is
a statistically significant positive correlation between hs and
FBs across the scales from 40 to 240 m, and Fig. B3 shows
that the distribution of s is stable across these scales, with a
slight shift of its mode to a larger value at coarser scales. By
cutting the distribution of s at its 99th percentile for FYI and
MYI, we find that it can be well captured by beta distribu-
tions. Section 4.2 contains the quantified results of the fitted
parameters for beta distributions at 40 m resolution for both
FYI and MYI.
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Figure B1. Distribution of α, β and s for FYI. Data of 40 m resolution (OIB) are used for computing the value of each parameter on the scale
of 37.5 km (i.e., approximately the native resolution of SMOS TB).

Figure B2. Same as Fig. B1 but for MYI.

Figure B3. Scaling of the distribution of s. Through coarsening
the measurement of snow depth and snow freeboard with adjacent
points, the value of s is computed for each spatial scale with the
nonlinear fitting in Sect. 3.1. The distribution of s is computed us-
ing all available data from OIB tracks.

The Cryosphere, 12, 993–1012, 2018 www.the-cryosphere.net/12/993/2018/



L. Zhou et al.: Sea ice parameter retrieval 1011

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work is partially supported by the
National Key R & D Program of China under the grant number
2017YFA0603902 and the General Program of National Science
Foundation of China under the grant number 41575076. The
authors would like to thank the editors and referees for their
invaluable efforts in improving the manuscript. Additionally, the
authors are grateful to Sascha Willmes and Guenther Heinemann
for the provision of Arctic sea ice lead map.

Edited by: Julienne Stroeve
Reviewed by: four anonymous referees

References

Aaboe, S., Breivik, L.-A., Eastwood, S., and Sorensen, A.: Sea Ice
Edge and Type Products, http://osisaf.met.no/p/ice/edge_type_
long_description.html, last access: 30 December 2016.

Abdalati, B., Zwally, H., Bindschadler, R., Csatho, B., Farrell, S.,
Fricker, H., Harding, D., Kwok, R., Lefsky, M., Markus, T., Mar-
shak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spin-
hirne, J., and Webb, C.: The ICESat-2 laser altimetry mission,
in: Proceedings of the IEEE, 98, 735–751, 2010.

Brucker, L. and Markus, T.: Arctic-scale assessment of satellite pas-
sive microwave-derived snow depth on sea ice using Operation
IceBridge airborne data, J. Geophys. Res.-Oceans, 118, 2892–
2905, 2013.

Burke, W. J., Schmugge, T., and Paris, J. F.: Comparison of 2.8- and
21-cm microwave radiometer observations over soils with emis-
sion model calculations, J. Geophys. Res., 84, 287–294, 1979.

Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H.: Sea
Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-
SSMIS Passive Microwave Data, Boulder, Colorado USA.
NASA National Snow and Ice Data Center Distributed Ac-
tive Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL,
1996.

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and
Zwally, H. J.: Deriving long-term time series of sea ice cover
from satellite passive-microwave multisensor data sets, J. Geo-
phys. Res., 104, 15803–15814, 1999.

Comiso, J., Cavalieri, D., and Markus, T.: Sea ice concentration,
ice temperature, and snow depth using AMSR-E data, IEEE
T. Geosci. Remote, 41, 243–252, 2003.

Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Acceler-
ated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35,
L01703, https://doi.org/10.1029/2007GL031972, 2008.

Cox, G. F. and Weeks, W. F.: Salinity variations in sea ice, J. Glaciol,
13, 109–120, 1974.

Cox, G. F. and Weeks, W. F.: Equations for determining the gas and
brine volumes in sea-ice samples, J. Glaciology, 29, 306–316,
1983.

Dee, D., Uppalaa, S., Simmonsa, A., Berrisforda, P., Polia, P.,
Kobayashib, S., Andraec, U., Balmasedaa, M., Balsamoa, G.,
Bauera, P., Bechtolda, P., Beljaarsa, A., van de Berg, L., Bidlota,
J., Bormanna, N., Delsola, C., Dragania, R., Fuentesa, M., Geera,

A., Haimbergere, L., Healya, S., Hersbacha, H., Holma, E., Isak-
sena, L., Kallbergc, P., Kohlera, M., Matricardia, M., McNallya,
A., Monge-Sanzf, B., Morcrettea, J.-J., Parkg, B.-K., Peubeya,
C., de Rosnaya, P., Tavolatoe, C., Thepauta, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy Meteor. Soc., 137, 553–
597, 2011.

Hall, D., Key, J., Casey, K., Riggs, G., and Cavalieri, D.: Sea ice
surface temperature product from MODIS, IEEE T. Geosci. Re-
mote, 42, 1076–1087, 2004.

Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster,
G., and Tonboe, R. T.: A sea-ice thickness retrieval model
for 1.4 GHz radiometry and application to airborne measure-
ments over low salinity sea-ice, The Cryosphere, 4, 583–592,
https://doi.org/10.5194/tc-4-583-2010, 2010.

Klein, L. and Swift, C.: An improved model for the dielectric con-
stant of sea water at microwave frequencies, IEEE T. Antenn.
Propag., 25, 104–111, 1977.

Kurtz, N., Markus, T., Farrell, S., Worthen, D., and Boisvert,
L.: Observations of recent Arctic sea ice volume loss
and its impact on ocean-atmosphere energy exchange
and ice production, J. Geophys. Res., 116, C04015,
https://doi.org/10.1029/2010JC006235, 2011.

Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth
on Arctic sea ice from Operation IceBridge, Geophys. Res. Lett.,
38, L20505, https://doi.org/10.1029/2011GL049216, 2011.

Kurtz, N., Studinger, M., Harbeck, J., Onana, V., and Farrell, S.: .
IceBridge Sea Ice Freeboard, Snow Depth, and Thickness, Ver-
sion 1. [Indicate subset used], Boulder, Colorado USA, NASA
National Snow and Ice Data Center Distributed Active Archive
Center, https://doi.org/10.5067/7XJ9HRV50O57, 2012 (updated
2015).

Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P.,
Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea
ice thickness, freeboard, and snow depth products from Oper-
ation IceBridge airborne data, The Cryosphere, 7, 1035–1056,
https://doi.org/10.5194/tc-7-1035-2013, 2013.

Kwok, R. and Cunningham, G. F.: ICESat over Arctic sea ice: Es-
timation of snow depth and ice thickness, J. Geophys. Res., 113,
C08010, https://doi.org/10.1029/2008JC004753, 2008.

Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally,
H. J., and Yi, D.: Thinning and volume loss of the Arctic
Ocean sea ice cover: 2003–2008, J. Geophys. Res., 114, C07005,
https://doi.org/10.1029/2009JC005312, 2009.

Kwok, R., Panzer, B., Leuschen, C., Pang, S., Markus, T.,
Holt, B., and Gogineni, S.: Airborne surveys of snow
depth over Arctic sea ice, J. Geophys. Res., 116, C11018,
https://doi.org/10.1029/2011JC007371, 2011.

Laxon, S., Peacock, N., and Smith, D.: High interannual variability
of sea ice thickness in the Arctic region, Nature, 425, 947–950,
https://doi.org/10.1038/nature02050, 2003.

Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt,
R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C.,
Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson,
M.: CryoSat-2 estimates of Arctic sea ice thickness and volume,
Geophys. Res. Lett., 40, 732–737, 2013.

Leuschen, C.: IceBridge Snow Radar L1B Geolocated
Radar Echo Strength Profiles, Version 2. [Indicate sub-
set used], Boulder, Colorado USA, NASA National Snow

www.the-cryosphere.net/12/993/2018/ The Cryosphere, 12, 993–1012, 2018

http://osisaf.met.no/p/ice/edge_type_long_description.html
http://osisaf.met.no/p/ice/edge_type_long_description.html
https://doi.org/10.5067/8GQ8LZQVL0VL
https://doi.org/10.1029/2007GL031972
https://doi.org/10.5194/tc-4-583-2010
https://doi.org/10.1029/2010JC006235
https://doi.org/10.1029/2011GL049216
https://doi.org/10.5067/7XJ9HRV50O57
https://doi.org/10.5194/tc-7-1035-2013
https://doi.org/10.1029/2008JC004753
https://doi.org/10.1029/2009JC005312
https://doi.org/10.1029/2011JC007371
https://doi.org/10.1038/nature02050


1012 L. Zhou et al.: Sea ice parameter retrieval

and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/FAZTWP500V70, updated 2017, 2014.

Maaß, N., Kaleschke, L., and Stammer, D.: Remote sensing of sea
ice thickness using SMOS data, PhD thesis, University of Ham-
burg, Hamburg, Germany, 2013a.

Maaß, N., Kaleschke, L., Tian-Kunze, X., and Drusch, M.: Snow
thickness retrieval over thick Arctic sea ice using SMOS satellite
data, The Cryosphere, 7, 1971–1989, https://doi.org/10.5194/tc-
7-1971-2013, 2013b.

McPhee, M., Proshutinsky, A., Morison, J. H., Steele, M.,
and Alkire, M.: Rapid change in freshwater content
of the Arctic Ocean, Geophys. Res. Lett., 36, L10602,
https://doi.org/10.1029/2009GL037525, 2009.

Perovich, D., Jones, K., Light, B., Eicken, H., Markus, T., Stroeve,
J., and Lindsay, R.: Solar partitioning in a changing Arctic sea-
ice cover, Ann. Glaciol., 52, 192–196, 2011.

Pounder, E. R.: The Physics of Ice, Am. J. Phys., 34, 827–827, 1966.
Rothrock, D. A., Yu, Y., and Maykut, G. A.: Thinning of the Arctic

sea-ice cover, Geophys. Res. Lett., 26, 3469–3472, 1999.
Schwarzacher, W.: Pack-ice studies in the Arctic Ocean, J. Geophys.

Res., 64, 2357–2367, 1959.
Screen, J. A. and Simmonds, I.: The central role of diminishing

sea ice in recent Arctic temperature amplification, Nature, 464,
1334–1337, https://doi.org/10.1038/nature09051, 2010.

Shetter, R., Buzay, E., and Gilst, D. V.: IceBridge NSERC L1B Ge-
olocated Meteorologic and Surface Temperature Data, Version
1. [Indicate subset used], Boulder, Colorado USA, NASA Na-
tional Snow and Ice Data Center Distributed Active Archive Cen-
ter, https://doi.org/10.5067/Y6SQDAAAOEQU, updated 2013,
2010.

Shi, J., Dong, X., Zhao, T., Du, Y., Liu, H., Wang, Z., Zhu,
D., Ji, D., Xiong, C., and Jiang, L.: The water cycle observa-
tion mission (WCOM): Overview, in: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 3430–
3433, https://doi.org/10.1109/IGARSS.2016.7729886, 2016.

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M.: Cli-
mate change 2013: The physical science basis, Intergovernmen-
tal Panel on Climate Change, Working Group I Contribution
to the IPCC Fifth Assessment Report (AR5)(Cambridge Univ
Press, New York), 2013.

Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using
records from submarine, aircraft and satellites to evaluate climate
model simulations of Arctic sea ice thickness, The Cryosphere,
8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014.

Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik,
J., and Barrett, A. P.: The Arctic’s rapidly shrinking sea ice cover:
a research synthesis, Climatic Change, 110, 1005–1027, 2012.

Studinger, M.: IceBridge ATM L1B Qfit Elevation and Return
Strength, Version 1. [Indicate subset used], Boulder, Colorado
USA. NASA National Snow and Ice Data Center Distributed
Active Archive Center, available at: https://doi.org/10.5067/
DZYN0SKIG6FB (last access: 25 November 2017), 2010 (up-
dated 2013).

Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N.,
Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thick-
ness: algorithm baseline, product specifications and initial verifi-
cation, The Cryosphere, 8, 997–1018, https://doi.org/10.5194/tc-
8-997-2014, 2014.

Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D. J.: In-
creased Arctic sea ice volume after anomalously low melting in
2013, Nat. Geosci., 8, 643–646, 2015.

Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M.: The com-
plex dielectric constant of snow at microwave frequencies, IEEE
J. Oceanic Eng., 9, 377–382, 1984.

Toudal Pedersen, L., Dybkjær, G., Eastwood, S., Heygster, G.,
Ivanova, N., Kern, S., Lavergne, T., Saldo, R., Sandven, S.,
Sørensen, A., and Tonboe, R.: ESA Sea Ice Climate Change Ini-
tiative(Sea_Ice_cci): Sea Ice Concentration Climate Data Record
from the AMSR-E and AMSR-2 instruments at 25 km grid
spacing, version 2.0, Centre for Environmental Data Analysis,
28 February 2017, https://doi.org/10.5285/c61bfe88-873b-44d8-
9b0e-6a0ee884ad95, last access: 30 May 2017.

Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote
Sensing, Active and Passive, Volume I, Microwave Remote Sens-
ing Fundamentals and Radiometry, Reading, Addison-Wesley,
MA, 1986.

Untersteiner, N.: Calculations of temperature regime and heat bud-
get of sea ice in the central Arctic, J. Geophys. Res., 69, 4755–
4766, 1964.

Vant, M., Ramseier, R., and Makios, V.: The complex-dielectric
constant of sea ice at frequencies in the range 0.1–40 GHz,
J. Appl. Phys., 49, 1264–1280, 1978.

Wadhams, P., Tucker III, W. B., Krabill, W. B., Swift, R. N.,
Comiso, J. C., and Davis, N. R.: Relationship between sea ice
freeboard and draft in the Arctic basin, and implications for ice
thickness monitoring, J. Geophys. Res., 97, 20325–20334, 1992.

Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryaz-
gin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on
Arctic Sea Ice, J. Climate, 12, 1814–1829, 1999.

Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell,
S. L., Perovich, D. K., and Sturm, M.: Interdecadal changes in
snow depth on Arctic sea ice, J. Geophys. Res.-Oceans, 119,
5395–5406, https://doi.org/10.1002/2014JC009985, 2014.

Willmes, S. and Heinemann, G.: Pan-Arctic lead detection from
MODIS thermal infrared imagery, Ann. Glaciol., 56, 29–37,
2015a.

Willmes, S. and Heinemann, G.: Sea-ice wintertime lead frequen-
cies and regional characteristics in the Arctic, 2003–2015, Re-
mote Sensing, 8, 4, https://doi.org/10.3390/rs8010004, 2015b.

Xu, S., Zhou, L., Liu, J., Lu, H., and Wang, B.: Data Syn-
ergy between Altimetry and L-Band Passive Microwave Re-
mote Sensing for the Retrieval of Sea Ice Parameters – A
Theoretical Study of Methodology, Remote Sensing, 9, 1079,
https://doi.org/10.3390/rs9101079, 2017.

Yu, Y. and Rothrock, D.: Thin ice thickness from satellite thermal
imagery, J. Geophys. Res., 101, 25753–25766, 1996.

Zhou, L., Xu, S., Liu, J., Lu, H., and Wang, B.: Im-
proving L-band radiation model and representation of
small-scale variability to simulate brightness tempera-
ture of sea ice, Int. J. Remote Sens., 38, 7070–7084,
https://doi.org/10.1080/01431161.2017.1371862, 2017.

Zubov, N. N.: Arctic ice, Chapter 5, Naval Oceanographic Office
Washington DC, Tech. rep., 139–148, 1963.

Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.:
Uncertainties in Arctic sea ice thickness and volume: new esti-
mates and implications for trends, The Cryosphere, 8, 705–720,
https://doi.org/10.5194/tc-8-705-2014, 2014.

The Cryosphere, 12, 993–1012, 2018 www.the-cryosphere.net/12/993/2018/

https://doi.org/10.5067/FAZTWP500V70
https://doi.org/10.5194/tc-7-1971-2013
https://doi.org/10.5194/tc-7-1971-2013
https://doi.org/10.1029/2009GL037525
https://doi.org/10.1038/nature09051
https://doi.org/10.5067/Y6SQDAAAOEQU
https://doi.org/10.1109/IGARSS.2016.7729886
https://doi.org/10.5194/tc-8-1839-2014
https://doi.org/10.5067/DZYN0SKIG6FB
https://doi.org/10.5067/DZYN0SKIG6FB
https://doi.org/10.5194/tc-8-997-2014
https://doi.org/10.5194/tc-8-997-2014
https://doi.org/10.5285/c61bfe88-873b-44d8-9b0e-6a0ee884ad95
https://doi.org/10.5285/c61bfe88-873b-44d8-9b0e-6a0ee884ad95
https://doi.org/10.1002/2014JC009985
https://doi.org/10.3390/rs8010004
https://doi.org/10.3390/rs9101079
https://doi.org/10.1080/01431161.2017.1371862
https://doi.org/10.5194/tc-8-705-2014

	Abstract
	Introduction
	Data and models
	Data
	Data usage protocols
	L-band radiation model
	Isostatic equilibrium model

	Retrievability analysis
	Covariability analysis based on OIB data
	Effects of covariability on retrievability

	Retrieval algorithm and evaluation
	Large-scale retrieval
	Uncertainty analysis

	Summary and discussion
	Difference with existing retrieval algorithms
	Covariability analysis
	Uncertainty estimation related to model parameters
	Outlook of satellite-based retrieval

	Data availability
	Appendix A: L-band radiation model
	Appendix A1: General information
	Appendix A2: Temperature and salinity structure
	Appendix A3: Radiative properties
	Appendix A4: Radiation model verification with OIB and SMOS data

	Appendix B: Statistical analysis for covariability
	Competing interests
	Acknowledgements
	References

