Articles | Volume 12, issue 11
The Cryosphere, 12, 3499–3509, 2018
The Cryosphere, 12, 3499–3509, 2018

Research article 09 Nov 2018

Research article | 09 Nov 2018

On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow

Varun Sharma et al.

Related authors

Introducing CRYOWRF v1.0: Multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev. Discuss.,,, 2021
Preprint under review for GMD
Short summary
Understanding snow bedform formation by adding sintering to a cellular automata model
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260,,, 2019
Short summary
Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160,,, 2018
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398,,, 2021
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948,,, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755,,, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272,,, 2021
Short summary
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714,,, 2021
Short summary

Cited articles

Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252,, 1999. a
Anderson, R. S. and Haff, P. K.: Simulation of Eolian Saltation, Science, 241, 820–823, 1988. a
Bou-Zeid, E., Meneveau, C., and Parlange, M. B.: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness, Water Resour. Res., 40,, 2004. a
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluids, 22, 015110,, 2010. a
Comola, F. and Lehning, M.: Energy- and momentum-conserving model of splash entrainment in sand and snow saltation, Geophys. Res. Lett., 44, 1601–1609,, 2017. a, b
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.