Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3265-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-3265-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling last glacial cycle ice dynamics in the Alps
Julien Seguinot
CORRESPONDING AUTHOR
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zurich, Switzerland
Arctic Research Center, Hokkaido University, Sapporo, Japan
Susan Ivy-Ochs
Laboratory of Ion Beam Physics, ETH Zürich, Zurich, Switzerland
Guillaume Jouvet
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zurich, Switzerland
Matthias Huss
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zurich, Switzerland
Martin Funk
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zurich, Switzerland
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
Related authors
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Short summary
In this study, we combine UAV (unmanned aerial vehicles) images taken over the Bowdoin Glacier, north-western Greenland, and a model describing the viscous motion of ice to track the propagation of crevasses responsible for the collapse of large icebergs at the glacier-ocean front (calving). This new technique allows us to explain the systematic calving pattern observed in spring and summer of 2015 and anticipate a possible rapid retreat in the future.
Patrick Becker, Julien Seguinot, Guillaume Jouvet, and Martin Funk
Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, https://doi.org/10.5194/gh-71-173-2016, 2016
Julien Seguinot, Irina Rogozhina, Arjen P. Stroeven, Martin Margold, and Johan Kleman
The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, https://doi.org/10.5194/tc-10-639-2016, 2016
Short summary
Short summary
We use a numerical model based on approximated ice flow physics and calibrated against field-based evidence to present numerical simulations of multiple advance and retreat phases of the former Cordilleran ice sheet in North America during the last glacial cycle (120 000 to 0 years before present).
J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, https://doi.org/10.5194/tc-8-1087-2014, 2014
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378, https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug.) and total precipitation (Oct.–Febr.). Our model can accurately predict glacier mass from 1961–2021 but struggles for extreme years (2022 and 2023).
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024, https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Short summary
The study of glacier sliding along slopes is relevant in many aspects of glaciology. We processed Sentinel-2 satellite optical images of Mont Blanc, obtaining surface velocities of 30 glaciers between 2016 and 2024. The study revealed different behaviours and velocity variations that have relationships with glacier morphology. A velocity anomaly was observed in some glaciers of the southern side in 2020–2022, but its origin needs to be investigated further.
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
EGUsphere, https://doi.org/10.5194/egusphere-2024-1476, https://doi.org/10.5194/egusphere-2024-1476, 2024
Short summary
Short summary
We report flow speed variations near the front of a tidewater glacier in Greenland. Ice flow near the glacier front is crucial for the mass loss of the Greenland ice sheet, but in-situ data are hard to obtain. Our unique in-situ GPS data revealed fine details of short-term speed variations associated with melting, ocean tides, and rain. The results are important for understanding the response of tidewater glaciers to changing environments, such as warming, more frequent rain, and ice thinning.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646, https://doi.org/10.5194/egusphere-2024-646, 2024
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice-bedrock interface. In 4 months of seismic records, we detect spatiotemporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modeling techniques. This low-velocity layer results from temporary water storage within the glacier.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Małgorzata Chmiel, Fabian Walter, Lukas Preiswerk, Martin Funk, Lorenz Meier, and Florent Brenguier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-205, https://doi.org/10.5194/nhess-2021-205, 2021
Preprint withdrawn
Short summary
Short summary
The hanging glacier on Switzerland’s Mount Eiger regularly produces ice avalanches which threaten tourist activity and nearby infrastructure. Reliable forecasting remains a challenge as physical processes leading to ice rupture are not fully understood yet. We propose a new method for hanging glacier monitoring using repeating englacial seismic signals. Our approach allows monitoring temperature and meltwater driven changes occurring in the hanging glacier at seasonal and diurnal timescales.
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Sandro Rossato, Susan Ivy-Ochs, Silvana Martin, Alfio Viganò, Christof Vockenhuber, Manuel Rigo, Giovanni Monegato, Marco De Zorzi, Nicola Surian, Paolo Campedel, and Paolo Mozzi
Nat. Hazards Earth Syst. Sci., 20, 2157–2174, https://doi.org/10.5194/nhess-20-2157-2020, https://doi.org/10.5194/nhess-20-2157-2020, 2020
Short summary
Short summary
Rock avalanches are extremely dangerous, causing much damage worldwide. The
Masiere di Vedanais a rock avalanche deposit (9 km2, 170 Mm3) in NE Italy. We dated it back to late Roman to early Middle Ages. Identified drivers are the overall structural setting, exceptional rainfall events and seismic shakings. No exceptional event is required as a trigger. When dealing with heavily deformed bedrocks, especially in inhabited areas, the occurrence of a huge event like this must be considered.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Ferréol Salomon, Darío Bernal-Casasola, José J. Díaz, Macarena Lara, Salvador Domínguez-Bella, Damien Ertlen, Patrick Wassmer, Pierre Adam, Philippe Schaeffer, Laurent Hardion, Cécile Vittori, Stoil Chapkanski, Hugo Delile, Laurent Schmitt, Frank Preusser, Martine Trautmann, Alessia Masi, Cristiano Vignola, Laura Sadori, Jacob Morales, Paloma Vidal Matutano, Vincent Robin, Benjamin Keller, Ángel Sanchez Bellón, Javier Martínez López, and Gilles Rixhon
Sci. Dril., 27, 35–47, https://doi.org/10.5194/sd-27-35-2020, https://doi.org/10.5194/sd-27-35-2020, 2020
Short summary
Short summary
PalaeoCADIX-Z is an interdisciplinary project that studied three cores drilled in a marine palaeochannel that ran through the ancient city of Cádiz (Spain). These cores reveal a ≥ 50 m thick Holocene sedimentary sequence. Importantly, most of the deposits date from the 1st millennium BCE to the 1st millennium CE. Geoarchaeologists, geomorphologists, archaeologists, sedimentologists, palaeoenvironmentalists, geochemists, and geochronologists collaborated within this project.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary
Short summary
The snow water equivalent (SWE) in high mountain regions is crucial for many applications. Yet its quantification remains difficult. We present autonomous daily SWE observations by a cosmic ray sensor (CRS) deployed on a Swiss glacier for two winter seasons. Combined with snow depth observations, we derive the daily bulk snow density. The validation with manual field observations and its measurement reliability show that the CRS is a promising device for high alpine cryospheric environments.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Judit Deák, Frank Preusser, Marie-Isabelle Cattin, Jean-Christophe Castel, and François-Xavier Chauvière
E&G Quaternary Sci. J., 67, 41–72, https://doi.org/10.5194/egqsj-67-41-2019, https://doi.org/10.5194/egqsj-67-41-2019, 2019
Short summary
Short summary
Provided here are novel data concerning site formation processes and Middle Palaeolithic human presence at Cotencher cave (Switzerland). A local glaciation around 70 ka was followed by ice-free conditions, when artefacts and faunal remains were displaced by solifluction processes. Evidence of local glacier development around 36 ka is also presented. This interdisciplinary study contributes new elements for the understanding of climatic changes and human passage in the central Jura Mountains.
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Lorenz Wüthrich, Marcel Bliedtner, Imke Kathrin Schäfer, Jana Zech, Fatemeh Shajari, Dorian Gaar, Frank Preusser, Gary Salazar, Sönke Szidat, and Roland Zech
E&G Quaternary Sci. J., 66, 91–100, https://doi.org/10.5194/egqsj-66-91-2017, https://doi.org/10.5194/egqsj-66-91-2017, 2017
Patrick Becker, Martin Funk, Christian Schlüchter, and Kolumban Hutter
Geogr. Helv., 72, 421–442, https://doi.org/10.5194/gh-72-421-2017, https://doi.org/10.5194/gh-72-421-2017, 2017
Short summary
Short summary
This article studies the ice flow in the Valais region during the last glaciation (Würm) in detail. The numerical modelling shows a discrepancy of the height of the ice cap compared to the geomorphological evidence based on trimlines. However, geomorphological evidence at the Simplon Pass indicating an ice flow from the Rhone valley into the valley of Toce was confirmed. Furthermore it is shown that for this confirmation a sufficient ice thickness is obligatory.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Short summary
In this study, we combine UAV (unmanned aerial vehicles) images taken over the Bowdoin Glacier, north-western Greenland, and a model describing the viscous motion of ice to track the propagation of crevasses responsible for the collapse of large icebergs at the glacier-ocean front (calving). This new technique allows us to explain the systematic calving pattern observed in spring and summer of 2015 and anticipate a possible rapid retreat in the future.
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary
Short summary
Recent surging of Kyagar Glacier (Karakoram) caused a hazardous ice-dammed lake to form and burst in 2015 and 2016. We use remotely sensed glacier surface velocities and surface elevation to observe dramatic changes in speed and mass distribution during the surge. The surge was hydrologically controlled with rapid summer onset and dramatic termination following lake outburst. Since the surge, the potential outburst hazard has remained high, and continued remote monitoring is crucial.
Patrick Becker, Julien Seguinot, Guillaume Jouvet, and Martin Funk
Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, https://doi.org/10.5194/gh-71-173-2016, 2016
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-116, https://doi.org/10.5194/tc-2016-116, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Glacier behaviour in high-mountain Asia is different from other regions due to debris cover and ice stagnation. This study incorporates these factors into a glacio-hydrological model for the first time at the Khumbu Glacier, Nepal. We show that including debris provides a more realistic representation of the Khumbu Glacier than in previous runoff models, and that changes to the debris surface significantly influence glacier and runoff evolution, with impacts on downstream water resources.
Jérome Faillettaz, Martin Funk, and Marco Vagliasindi
The Cryosphere, 10, 1191–1200, https://doi.org/10.5194/tc-10-1191-2016, https://doi.org/10.5194/tc-10-1191-2016, 2016
Short summary
Short summary
The break-off of a cold hanging glacier could be successfully predicted 10 days in advance thanks to very accurate surface displacement measurements taken right up to the final event.
This break-off event also confirmed that surface displacements experience a power law acceleration along with superimposed log-periodic oscillations prior to the final rupture.
This paper describes the methods used to achieve a satisfactory time forecast in real time.
Julien Seguinot, Irina Rogozhina, Arjen P. Stroeven, Martin Margold, and Johan Kleman
The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, https://doi.org/10.5194/tc-10-639-2016, 2016
Short summary
Short summary
We use a numerical model based on approximated ice flow physics and calibrated against field-based evidence to present numerical simulations of multiple advance and retreat phases of the former Cordilleran ice sheet in North America during the last glacial cycle (120 000 to 0 years before present).
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
H. Machguth and M. Huss
The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014, https://doi.org/10.5194/tc-8-1741-2014, 2014
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, https://doi.org/10.5194/tc-8-1261-2014, 2014
J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, https://doi.org/10.5194/tc-8-1087-2014, 2014
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
D. Farinotti and M. Huss
The Cryosphere, 7, 1707–1720, https://doi.org/10.5194/tc-7-1707-2013, https://doi.org/10.5194/tc-7-1707-2013, 2013
D. Finger, A. Hugentobler, M. Huss, A. Voinesco, H. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner
Hydrol. Earth Syst. Sci., 17, 3261–3277, https://doi.org/10.5194/hess-17-3261-2013, https://doi.org/10.5194/hess-17-3261-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
M. Huss
The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, https://doi.org/10.5194/tc-7-877-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Paleo-Glaciology (including Former Ice Reconstructions)
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Late Holocene glacier and climate fluctuations in the Mackenzie and Selwyn mountain ranges, northwestern Canada
Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
Understanding drivers of glacier-length variability over the last millennium
Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s
Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Adam C. Hawkins, Brian Menounos, Brent M. Goehring, Gerald Osborn, Ben M. Pelto, Christopher M. Darvill, and Joerg M. Schaefer
The Cryosphere, 17, 4381–4397, https://doi.org/10.5194/tc-17-4381-2023, https://doi.org/10.5194/tc-17-4381-2023, 2023
Short summary
Short summary
Our study developed a record of glacier and climate change in the Mackenzie and Selwyn mountains of northwestern Canada over the past several hundred years. We estimate temperature change in this region using several methods and incorporate our glacier record with models of climate change to estimate how glacier volume in our study area has changed over time. Models of future glacier change show that our study area will become largely ice-free by the end of the 21st century.
Weilin Yang, Yingkui Li, Gengnian Liu, and Wenchao Chu
The Cryosphere, 16, 3739–3752, https://doi.org/10.5194/tc-16-3739-2022, https://doi.org/10.5194/tc-16-3739-2022, 2022
Short summary
Short summary
We simulated the glacier evolutions in Bhutanese Himalaya during the LIA using OGGM. At the regional scale, four compelling glacial substages were reported, and a positive correlation between the number of glacial substages and the glacier slope was found. Based on the surface mass balance analysis, the study also indicated that the regional glacier advances are dominated by the reduction of summer ablation.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Johannes Oerlemans
The Cryosphere, 12, 3001–3015, https://doi.org/10.5194/tc-12-3001-2018, https://doi.org/10.5194/tc-12-3001-2018, 2018
Short summary
Short summary
Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. The front is retreating fast. Calculations with a glacier model predict that due to future climate warming this glacier will have lost 20 to 40 % of its volume by the year 2100. Because of the glacier's memory, much of the response will come after 2100, even if the climatic conditions would stabilize.
Cited articles
Agassiz, L.: Etudes sur les glaciers, Jent et Gassmann, Soleure, 1840. a
Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to
measure ice sheet model sensitivity to initial states, The Cryosphere, 7,
1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013. a, b, c
Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M.,
Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B.,
Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson,
M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P.,
Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A.,
Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R.,
Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit,
J.-R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U.,
Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F.,
Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den Broeke, M., Weiss,
J., Wilhelms, F., Winther, J.-G., Wolff, E. W., and Zucchelli, M.: Eight
glacial cycles from an Antarctic ice core, Nature, 429, 623–628,
https://doi.org/10.1038/nature02599, 2004. a, b
Ballantyne, C. K. and Stone, J. O.: Trimlines, blockfields and the vertical
extent of the last ice sheet in southern Ireland, Boreas, 44, 277–287,
https://doi.org/10.1111/bor.12109, 2015. a, b
Barrett, S., Starnberger, R., Tjallingii, R., Brauer, A., and Spötl, C.:
The sedimentary history of the inner-alpine Inn Valley, Austria: extending
the Baumkirchen type section further back in time with new drilling,
J. Quaternary Sci., 32, 63–79, https://doi.org/10.1002/jqs.2924, 2017. a, b, c
Barrett, S. J., Drescher-Schneider, R., Starnberger, R., and Spötl, C.:
Evaluation of the regional vegetation and climate in the Eastern Alps
(Austria) during MIS 3–4 based on pollen analysis of the classical
Baumkirchen paleolake sequence, Quaternary Res., 90, 153–163,
https://doi.org/10.1017/qua.2018.26, 2018. a
Barron, E. and Pollard, D.: High-Resolution Climate Simulations of Oxygen
Isotope Stage 3 in Europe, Quaternary Res., 58, 296–309,
https://doi.org/10.1006/qres.2002.2374, 2002. a
Bavec, M. and Verbič, T.: Chapter 29 – Glacial History of Slovenia, in:
Quaternary Glaciations – Extent and Chronology: A Closer Look,
edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., 15, 385–392, https://doi.org/10.1016/b978-0-444-53447-7.00029-5, 2011. a, b
Becker, P.: Numerische Modellierung der Alpenvergletscherung während des
letztglazialen Maximums, PhD thesis, ETH Zürich, Switzerland,
https://doi.org/10.3929/ethz-b-000161489, 2017. a
Becker, P., Seguinot, J., Jouvet, G., and Funk, M.: Last Glacial Maximum
precipitation pattern in the Alps inferred from glacier modelling, Geogr.
Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, 2016. a, b, c, d
Becker, P., Funk, M., Schlüchter, C., and Hutter, K.: A study of the
Würm glaciation focused on the Valais region (Alps), Geogr. Helv., 72,
421–442, https://doi.org/10.5194/gh-72-421-2017, 2017. a, b
BGR: Geologische Übersichtskarte der Bundesrepublik Deutschland
, various sheets, Bundesanstalt für Geowissenschaften und
Rohstoffe, Hannover, 2007. a
Blatter, H. and Haeberli, W.: Modelling Temperature Distribution in Alpine
Glaciers, Ann. Glaciol., 5, 18–22, https://doi.org/10.3189/1984aog5-1-18-22, 1984. a, b
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and
Häuselmann, Ph.: NALPS: a precisely dated European climate record
120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011. a
Bohleber, P., Hoffmann, H., Kerch, J., Sold, L., and Fischer, A.:
Investigating cold based summit glaciers through direct access to the glacier
base: a case study constraining the maximum age of Chli Titlis glacier,
Switzerland, The Cryosphere, 12, 401–412, https://doi.org/10.5194/tc-12-401-2018,
2018. a
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the
Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635,
https://doi.org/10.5194/gmd-8-1613-2015, 2015. a, b, c, d
Bueler, E., Lingle, C. S., and Brown, J.: Fast computation of a viscoelastic
deformable Earth model for ice-sheet simulations, Ann. Glaciol., 46, 97–105,
https://doi.org/10.3189/172756407782871567, 2007. a
Buoncristiani, J.-F. and Campy, M.: Quaternary Glaciations in the French Alps
and Jura, in:
Quaternary Glaciations – Extent and Chronology: A Closer Look,
edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., 117–126,
https://doi.org/10.1016/b978-0-444-53447-7.00010-6, 2011. a
Calov, R. and Greve, R.: A semi-analytical solution for the positive
degree-day model with stochastic temperature variations, J. Glaciol., 51,
173–175, https://doi.org/10.3189/172756505781829601, 2005. a
Carcaillet, C. and Blarquez, O.: Fire ecology of a tree glacial refugium on a
nunatak with a view on Alpine glaciers, New Phytol., 216, 1281–1290,
https://doi.org/10.1111/nph.14721, 2017. a
Carcaillet, C., Latil, J.-L., Abou, S., Ali, A., Ghaleb, B., Magnin, F.,
Roiron, P., and Aubert, S.: Keep your feet warm? A cryptic refugium of trees
linked to a geothermal spring in an ocean of glaciers, Glob. Change Biol.,
24, 2476–2487, https://doi.org/10.1111/gcb.14067, 2018. a
Chamberlin, T. C.: Glacial phenomena of North America, in: The great ice age,
edited by: Geikie, J., Stanford, London, 3rd edn., 724–775, 1894. a
Cohen, D., Gillet-Chaulet, F., Haeberli, W., Machguth, H., and Fischer, U.
H.: Numerical reconstructions of the flow and basal conditions of the Rhine
glacier, European Central Alps, at the Last Glacial Maximum, The Cryosphere,
12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018, 2018. a, b, c, d
Cossart, E., Fort, M., Bourlès, D., Braucher, R., Perrier, R., and
Siame, L.: Deglaciation pattern during the Lateglacial/Holocene transition in
the southern French Alps. Chronological data and geographical reconstruction
from the Clarée Valley (upper Durance catchment, southeastern France),
Palaeogeogr. Palaeocl., 315-316, 109–123,
https://doi.org/10.1016/j.palaeo.2011.11.017, 2012. a, b
Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B., and Jouzel,
J.: Past Accumulation rates derived from observed annual layers in the GRIP
ice core from Summit, Central Greenland, in: Ice in the Climate System,
edited by: Peltier, W. R., NATO ASI Series, 12, 517–532,
https://doi.org/10.1007/978-3-642-85016-5_29, 1993. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general
instability of past climate from a 250-kyr ice-core record, Nature, 364,
218–220, https://doi.org/10.1038/364218a0, 1993. a, b, c
de Beaulieu, J.-L. and Reille, M.: The last climatic cycle at La Grande Pile
(Vosges, France) a new pollen profile, Quaternary Sci. Rev., 11, 431–438,
https://doi.org/10.1016/0277-3791(92)90025-4, 1992. a
de Charpentier, J.: Essai sur les glaciers et sur le terrain erratique du
bassin du Rhône, Ducloux, Lausanne, https://doi.org/10.3931/e-rara-8464, 1841. a
de Saussure, H.-B.: Voyages dans les Alpes, précédés d'un essai
sur l'histoire naturelle des environs de Genève, vol. 1, Fauche-Borel,
Neuchâtel, 1779. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette,
J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,
J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Duprat-Oualid, F., Rius, D., Bégeot, C., Magny, M., Millet, L., Wulf,
S., and Appelt, O.: Vegetation response to abrupt climate changes in Western
Europe from 45 to 14.7 k cal a BP: the Bergsee lacustrine record (Black
Forest, Germany), J. Quaternary Sci., 32, 1008–1021, https://doi.org/10.1002/jqs.2972,
2017. a
Duval, P.: The role of the water content on the creep rate of polycrystalline
ice, in: Isotopes and impurities in snow and ice, Proceedings of the Grenoble
Symposium, August–September 1975, IAHS Publ. no. 118, 29–33, 1977. a
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Supplementary data to Quaternary glaciations – extent and chronology, a closer look, vol.
15 of Dev. Quaternary Sci., Elsevier, Amsterdam, available at: https://booksite.elsevier.com/9780444534477 (last access: 10
February 2016), 2011. a, b, c, d, e, f
Emiliani, C.: Pleistocene Temperatures, J. Geol., 63, 538–578,
https://doi.org/10.1086/626295, 1955. a
Fabel, D., Ballantyne, C. K., and Xu, S.: Trimlines, blockfields,
mountain-top erratics and the vertical dimensions of the last British-Irish
Ice Sheet in NW Scotland, Quaternary Sci. Rev., 55, 91–102,
https://doi.org/10.1016/j.quascirev.2012.09.002, 2012. a, b
Federici, P. R., Ribolini, A., and Spagnolo, M.: Glacial history of the
Maritime Alps from the Last Glacial Maximum to the Little Ice Age, Geol. Soc.
Spec. Publ., 433, 137–159, https://doi.org/10.1144/SP433.9, 2017. a, b
Florineth, D.: Surface geometry of the Last Glacial Maximum (LGM) in the
southeastern Swiss Alps (Graubünden) and its paleoclimatological
significance, E&G Quaternary Sci. J., 48, 23–37, https://doi.org/10.3285/eg.48.1.03,
1998. a, b
Forbes, J. D.: Illustrations of the Viscous Theory of Glacier Motion.
Part III, Philos. T. R. Soc. Lond., 136, 177–210,
https://doi.org/10.1098/rstl.1846.0015, 1846. a
Gild, C., Geitner, C., and Sanders, D.: Discovery of a landscape-wide drape
of late-glacial aeolian silt in the western Northern Calcareous Alps
(Austria): First results and implications, Geology, 301, 39–52,
https://doi.org/10.1016/j.geomorph.2017.10.025, 2018. a
Glen, J.: Experiments on the deformation of ice, J. Glaciol., 2, 111–114,
1952. a
Golledge, N. R., Mackintosh, A. N., Anderson, B. M., Buckley, K. M., Doughty,
A. M., Barrell, D. J., Denton, G. H., Vandergoes, M. J., Andersen, B. G., and
Schaefer, J. M.: Last Glacial Maximum climate in New Zealand inferred from a
modelled Southern Alps icefield, Quaternary Res., 46, 30–45,
https://doi.org/10.1016/j.quascirev.2012.05.004, 2012. a
Goutorbe, B., Poort, J., Lucazeau, F., and Raillard,
S.: Global heat flow trends resolved from multiple geological and geophysical
proxies, Geophys. J. Int., 187, 1405–1419,
https://doi.org/10.1111/j.1365-246x.2011.05228.x, 2011. a, b
Haeberli, W., Rellstab, W., and Harrison, W. D.: Geothermal Effects of 18 ka
BP Ice Conditions in the Swiss Plateau, Ann. Glaciol., 5, 56–60,
https://doi.org/10.3189/1984aog5-1-56-60, 1984. a
Hantke, R.: Eiszeitalter : Kalt-/Warmzeit-Zyklen und Eistransport im alpinen
und voralpinen Raum, Ott, Bern, 2011. a
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
Orbit: Pacemaker of the Ice Ages, Science, 194, 1121–1132,
https://doi.org/10.1126/science.194.4270.1121, 1976. a
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A.,
Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M.,
Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P.,
Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate
records 60–8 ka in the Austrian and Swiss Alps and their forelands,
Quaternary Sci. Rev., 106, 186–205, https://doi.org/10.1016/j.quascirev.2014.05.021,
2014. a, b
Heyman, B. M., Heyman, J., Fickert, T., and Harbor, J. M.: Paleo-climate of
the central European uplands during the last glacial maximum based on glacier
mass-balance modeling, Quaternary Res., 79, 49–54,
https://doi.org/10.1016/j.yqres.2012.09.005, 2013. a, b
Heyman, J., Stroeven, A. P., Harbor, J. M., and Caffee, M. W.: Too young or
tooold: Evaluating cosmogenic exposure dating based on an analysis of
compiled boulder exposure ages, Earth Planet. Sc. Lett., 302, 71–80,
https://doi.org/10.1016/j.epsl.2010.11.040, 2011. a
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005. a, b, c, d
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol.,
282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. a
Huss, M. and Farinotti, D.: Distributed ice thickness and volume of all
glaciers around the globe, J. Geophys. Res., 117, F04010,
https://doi.org/10.1029/2012JF002523, 2012. a, b
Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic
reconstructions of the Greenland and Antarctic ice sheets during the glacial
cycles, Quaternary Sci. Rev., 21, 203–231,
https://doi.org/10.1016/s0277-3791(01)00082-8, 2002. a, b
Isotta, F. A., Frei, C., Weilguni, V., Tadić, M. P., Lassègues,
P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M.,
Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri,
E., Marigo, G., and Vertačnik, G.: The climate of daily precipitation
in the Alps: development and analysis of a high-resolution grid dataset from
pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675,
https://doi.org/10.1002/joc.3794, 2013. a
Ivy-Ochs, S.: Glacier variations in the European Alps at the end of the last
glaciation, Cuadernos de Investigación Geográfica, 41, 295–315,
https://doi.org/10.18172/cig.2750, 2015. a, b, c, d
Ivy-Ochs, S., Kerschner, H., Kubik, P. W., and Schlüchter, C.: Glacier
response in the European Alps to Heinrich Event 1 cooling: the Gschnitz
stadial, J. Quaternary Sci., 21, 115–130, https://doi.org/10.1002/jqs.955, 2006. a
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in the
European Alps, Quaternary Sci. Rev., 28, 2137–2149,
https://doi.org/10.1016/j.quascirev.2009.03.009, 2009. a
Ivy-Ochs, S., Lucchesi, S., Baggio, P., Fioraso, G., Gianotti, F., Monegato,
G., Graf, A. A., Akçar, N., Christl, M., Carraro, F., Forno, M. G., and
Schlüchter, C.: New geomorphological and chronological constraints for
glacial deposits in the Rivoli-Avigliana end-moraine system and the lower
Susa Valley (Western Alps, NW Italy), J. Quaternary Sci., 33, 550–562,
https://doi.org/10.1002/jqs.3034, 2018. a
Jäckli, H.: Die Vergletscherung der Schweiz im Würm maximum, Eclogae
Geol. Helv., 55, 12 pp., https://doi.org/10.5169/seals-162924, 1962. a, b, c
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland
palaeotemperatures derived from GRIP bore hole temperature and ice core
isotope profiles, Tellus B, 47, 624–629,
https://doi.org/10.1034/j.1600-0889.47.issue5.9.x, 1995. a
Jouvet, G., Seguinot, J., Ivy-Ochs, S., and Funk, M.: Modelling the diversion
of erratic boulders by the Valais Glacier during the last glacial maximum, J.
Glaciol., 63, 487–498, https://doi.org/10.1017/jog.2017.7, 2017. a, b, c
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff,
E. W.: Orbital and Millennial Antarctic Climate Variability over the Past
800,000 Years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007. a, b, c
Keller, O. and Krayss, E.: Mittel- und spätpleistozäne Stratigraphie und Morphogenese in Schlüsselregionen der Nordschweiz, E&G Quaternary Sci. J., 59, 88–119, https://doi.org/10.3285/eg.59.1-2.08, 2011. a, b
Kjellström, E., Brandefelt, J., Näslund, J.-O., Smith, B.,
Strandberg, G., Voelker, A. H. L., and Wohlfarth, B.: Simulated climate
conditions in Europe during the Marine Isotope Stage 3 stadial, Boreas, 39,
436–456, https://doi.org/10.1111/j.1502-3885.2010.00143.x, 2010. a
Kleiner, T., Rückamp, M., Bondzio, J. H., and Humbert, A.: Enthalpy
benchmark experiments for numerical ice sheet models, The Cryosphere, 9,
217–228, https://doi.org/10.5194/tc-9-217-2015, 2015. a
Kleman, J.: Preservation of landforms under ice sheets and ice caps,
Geomorphology, 9, 19–32, https://doi.org/10.1016/0169-555x(94)90028-0, 1994. a, b, c
Kleman, J. and Borgström, I.: Glacial land forms indicative of a partly
frozen bed, J. Glaciol., 40, 255–264, https://doi.org/10.1017/S0022143000007346, 1994. a
Kleman, J., Hättestrand, C., Stroeven, A. P., Jansson, K. N., De Angelis,
H., and Borgström, I.: Reconstruction of Palaeo-Ice Sheets – Inversion
of their Glacial Geomorphological Record, in: Glacier Science and
Environmental Change, edited by: Knight, P. G., Blackwell, Malden, MA,
192–198, https://doi.org/10.1002/9780470750636.ch38, 2006. a
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A., Hättestrand, C.,
Alm, G., and Glasser, N.: North American ice sheet build-up during the last
glacial cycle, 115–21 kyr, Quaternary Sci. Rev., 29, 2036–2051,
https://doi.org/10.1016/j.quascirev.2010.04.021, 2010. a, b, c
Kuchar, J., Milne, G., Hubbard, A., Patton, H., Bradley, S., Shennan, I., and
Edwards, R.: Evaluation of a numerical model of the British-Irish ice sheet
using relative sea-level data: implications for the interpretation of
trimline observations, J. Quaternary Sci., 27, 597–605,
https://doi.org/10.1002/jqs.2552, 2012. a
Lindgren, A., Hugelius, G., Kuhry, P., Christensen, T. R., and Vandenberghe,
J.: GIS-based Maps and Area Estimates of Northern Hemisphere Permafrost
Extent during the Last Glacial Maximum, Palaeogeogr. Palaeocl., 27, 6–16,
https://doi.org/10.1002/ppp.1851, 2016. a
Lingle, C. S. and Clark, J. A.: A numerical model of interactions between
a marine ice sheet and the solid Earth: application to a West Antarctic ice
stream, J. Geophys. Res., 90, 1100–1114, https://doi.org/10.1029/JC090iC01p01100,
1985. a
Link, A. and Preusser, F.: Hinweise auf eine Vergletscherung des Kemptener
Beckens während des Mittelwürms, Eiszeitalter und Gegenwart, 55,
65–88, https://doi.org/10.3285/eg.55.1, 2006. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004pa001071, 2005. a, b, c, d
Love, A. E. H.: A treatise on the mathematical theory of elasticity, 2nd
edn., Cambridge University Press, Cambridge, UK, 1906. a
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional
atmospheric circulation over Europe during the Last Glacial Maximum and its
links to precipitation, J. Geophys. Res.-Atmos., 121, 2130–2145,
https://doi.org/10.1002/2015jd024444, 2016. a, b
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards,
R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track
changes during the Last Glacial Maximum recorded by Alpine speleothems,
Nature Communications, 6, 6344, https://doi.org/10.1038/ncomms7344, 2015. a, b, c, d
Lüthi, M., Funk, M., Iken, A., Gogineni, S., and Truffer, M.: Mechanisms
of fast flow in Jakobshavns Isbræ, Greenland; Part III:
measurements of ice deformation, temperature and cross-borehole conductivity
in boreholes to the bedrock, J. Glaciol., 48, 369–385,
https://doi.org/10.3189/172756502781831322, 2002. a
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli,
M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface
water destabilizations on the Iberian margin, Science, 317, 502–507,
https://doi.org/10.1126/science.1139994, 2007. a, b
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American regional reanalysis, B. Am.
Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., and Wick,
L.: Evidence of a two-fold glacial advance during the last glacial maximum in
the Tagliamento end moraine system (eastern Alps), Quaternary Res., 68,
284–302, https://doi.org/10.1016/j.yqres.2007.07.002, 2007. a
Nye, J. F.: The Flow Law of Ice from Measurements in Glacier Tunnels,
Laboratory Experiments and the Jungfraufirn Borehole Experiment, P. Roy.
Soc. A-Math. Phy., 219, 477–489, 1953. a
Paterson, W. S. B. and Budd, W. F.: Flow parameters for ice sheet modeling,
Cold Reg. Sci. Technol., 6, 175–177, 1982. a
Patterson, T. and Kelso, N. V.: Natural Earth. Free vector and raster map
data, available at: http://naturalearthdata.com, last access:
22 November 2017. a
Preusser, F. and Schlüchter, C.: Dates from an important early Late
Pleistocene ice advance in the Aare valley, Switzerland, Eclogae Geol. Helv.,
97, 245–253, https://doi.org/10.1007/s00015-004-1119-4, 2004. a
Preusser, F., Geyh, M. A., and Schlüchter, C.: Timing of Late Pleistocene
climate change in lowland Switzerland, Quaternary Sci. Rev., 22, 1435–1445,
https://doi.org/10.1016/S0277-3791(03)00127-6, 2003. a
Preusser, F., Blei, A., Graf, H. R., and Schlüchter, C.: Luminescence
dating of Würmian (Weichselian) proglacial sediments from Switzerland:
methodological aspects and stratigraphical conclusions, Boreas, 36, 130–142,
https://doi.org/10.1111/j.1502-3885.2007.tb01187.x, 2007. a
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.:
Quaternary glaciation history of northern Switzerland, Quaternary Sci. J.,
60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011. a, b
Rolland, C.: Spatial and Seasonal Variations of Air Temperature Lapse Rates
in Alpine Regions, J. Climate, 16, 1032–1046,
https://doi.org/10.1175/1520-0442(2003)016<1032:sasvoa>2.0.co;2,
2003. a, b
Schlüchter, C.: A non-classical summary of the Quaternary stratigraphy
in the northern alpine foreland of Switzerland, Bulletin de la
Société Neuchâteloise de Géographie, 32, 143–157, 1988. a
Schlüchter, C.: Fazies und Chronologie des letzteiszeitlichen
Eisaufbaues im Alpenvorland der Schweiz, in: Klimageschichtliche Probleme
der letzten 130000 Jahre, in: Klimageschichtliche Probleme der letzten
130 000 Jahre, edited by: Frenzel, B., G. Fischer Verlag, Stuttgart,
401–407, 1991. a
Schoof, C.: The effect of basal topography on ice sheet dynamics, Continuum
Mech. Therm., 15, 295–307, https://doi.org/10.1007/s00161-003-0119-3, 2003. a
Seguinot, J.: Spatial and seasonal effects of temperature variability in a
positive degree-day glacier surface mass-balance model, J. Glaciol., 59,
1202–1204, https://doi.org/10.3189/2013JoG13J081, 2013. a, b, c
Seguinot, J., Khroulev, C., Rogozhina, I., Stroeven, A. P., and Zhang, Q.:
The effect of climate forcing on numerical simulations of the Cordilleran ice
sheet at the Last Glacial Maximum, The Cryosphere, 8, 1087–1103,
https://doi.org/10.5194/tc-8-1087-2014, 2014. a, b
Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M., and Kleman, J.:
Numerical simulations of the Cordilleran ice sheet through the last glacial
cycle, The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, 2016. a, b
Seguinot, J.: Alpine ice sheet glacial cycle simulations aggregated variables
[Data set], Zenodo, available at: https://doi.org/10.5281/zenodo.1423160,
2018a.
Seguinot, J.: Alpine ice sheet glacial cycle simulations continuous variables
[Data set], Zenodo, available at: https://doi.org/10.5281/zenodo.1423176,
2018b.
Seguinot, J.: Modelling last glacial cycle ice dynamics in the Alps, German
National Library of Science and Technology (TIB) AV-Portal, available at:
https://doi.org/10.5446/35164, 2018c. a
Shackleton, N. J. and Opdyke, N. D.: Oxygen isotope and palaeomagnetic
stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures
and ice volumes on a 105 year and 106 year scale, Quaternary Res., 3,
39–55, https://doi.org/10.1016/0033-5894(73)90052-5, 1973. a
Spötl, C. and Mangini, A.: Stalagmite from the Austrian Alps reveals
Dansgaard–Oeschger events during isotope stage 3:: Implications for the
absolute chronology of Greenland ice cores, Earth Planet. Sc. Lett., 203,
507–518, https://doi.org/10.1016/S0012-821X(02)00837-3, 2002. a, b, c
Spötl, C., Reimer, P. J., and Göhlich, U. B.: Mammoths inside the
Alps during the last glacial period: Radiocarbon constraints from Austria and
palaeoenvironmental implications, Quaternary Sci. Rev., 190, 11–19,
https://doi.org/10.1016/j.quascirev.2018.04.020, 2018. a
Strandberg, G., Brandefelt, J., Kjellstrom, E., and Smith, B.:
High-resolution regional simulation of last glacial maximum climate in
Europe, Tellus A, 63, 107–125, https://doi.org/10.1111/j.1600-0870.2010.00485.x, 2011. a, b
Stroeven, A. P., Fabel, D., Hättestrand, C., and Harbor, J.: A relict
landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide
evidence of tors preserved through multiple glacial cycles, Geomorphology,
44, 145–154, https://doi.org/10.1016/S0169-555X(01)00150-7, 2002. a
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.:
Cold firn and ice of high-altitude glaciers in the Alps: measurements and
distribution modelling, J. Glaciol., 47, 85–96,
https://doi.org/10.3189/172756501781832566, 2001. a
Van Husen, D. and Reitner, J. M.: An Outline of the Quaternary Stratigraphy of Austria, E&G Quaternary Sci. J., 60, 366–387, https://doi.org/10.3285/eg.60.2-3.09, 2011. a
Venetz, I.: Mémoire sur les variations de la température dans les
Alpes de la Suisse, 38 pp., 1821. a
Walcott, R. I.: Flexural rigidity, thickness, and viscosity of the
lithosphere, J. Geophys. Res., 75, 3941–3954, https://doi.org/10.1029/JB075i020p03941,
1970. a
Windham, W. and Martel, P.: An account of the glacières or ice alps in
Savoy, in two letters, one from an English gentleman to his friend at Geneva;
the other from Peter Martel, engineer, to the said English gentleman, as laid
before the Royal Society, London, UK, 1744. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E.,
Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model
(PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726,
https://doi.org/10.5194/tc-5-715-2011, 2011. a
Wohlfarth, B., Veres, D., Ampel, L., Lacourse, T., Blaauw, M., Preusser, F.,
Andrieu-Ponel, V., Kéravis, D., Lallier-Vergès, E., Björck, S.,
Davies, S. M., de Beaulieu, J.-L., Risberg, J., Hormes, A., Kasper, H. U.,
Possnert, G., Reille, M., Thouveny, N., and Zander, A.: Rapid ecosystem
response to abrupt climate changes during the last glacial period in western
Europe, 40–16 ka, Geology, 36, 407, https://doi.org/10.1130/G24600A.1, 2008. a, b, c
Ziemen, F. A., Hock, R., Aschwanden, A., Khroulev, C., Kienholz, C.,
Melkonian, A., and Zhang, J.: Modeling the evolution of the Juneau Icefield
between 1971 and 2100 using the Parallel Ice Sheet Model (PISM), J. Glaciol.,
62, 199–214, https://doi.org/10.1017/jog.2016.13, 2016. a
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the...