Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-2855-2018
https://doi.org/10.5194/tc-12-2855-2018
Research article
 | 
06 Sep 2018
Research article |  | 06 Sep 2018

Investigating future changes in the volume budget of the Arctic sea ice in a coupled climate model

Ann Keen and Ed Blockley

Related authors

An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021,https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
The sea ice model component of HadGEM3-GC3.1
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018,https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary
Brief Communication: Does it matter exactly when the Arctic will become ice-free?
J. K. Ridley, R. A. Wood, A. B. Keen, E. Blockley, and J. A. Lowe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-28,https://doi.org/10.5194/tc-2016-28, 2016
Revised manuscript has not been submitted
Short summary
Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model
J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters
Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015,https://doi.org/10.5194/gmd-8-2221-2015, 2015
Short summary
Mechanisms causing reduced Arctic sea ice loss in a coupled climate model
A. E. West, A. B. Keen, and H. T. Hewitt
The Cryosphere, 7, 555–567, https://doi.org/10.5194/tc-7-555-2013,https://doi.org/10.5194/tc-7-555-2013, 2013

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024,https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary

Cited articles

Bathiany, S., Notz, D., Mauritsen, T., Raedel, G., and Brovkin, V.: On the Potential for Abrupt Arctic Winter Sea ice Loss, J. Climate, 29, 2703–2719, https://doi.org/10.1175/jcli-d-15-0466.1, 2016. 
Burgard, C. and Notz, D.: Drivers of Arctic Ocean warming in CMIP5 models, Geophys. Res. Lett., 44, 4263–4271, https://doi.org/10.1002/2016gl072342, 2017. 
Curry, J. A., Schramm, J. L., Perovich, D. K., and Pinto, J. O.: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations, J. Geophys. Res., 106, 15345–15355, https://doi.org/10.1029/2000jd900311, 2001. 
English, J. M., Gettelman, A., and Henderson, G. R.: Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models, J. Climate, 28, 6019–6038, https://doi.org/10.1175/jcli-d-14-00801.1, 2015. 
Download
Short summary
As the climate warms during the 21st century, our model shows extra melting at the top and the base of the Arctic sea ice. The reducing ice cover affects the impact these processes have on the sea ice volume budget, where the largest individual change is a reduction in the amount of growth at the base of existing ice. Using different forcing scenarios we show that, for this model, changes in the volume budget depend on the evolving ice area but not on the speed at which the ice area declines.