Articles | Volume 12, issue 6
https://doi.org/10.5194/tc-12-2109-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-2109-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local topography increasingly influences the mass balance of a retreating cirque glacier
Caitlyn Florentine
CORRESPONDING AUTHOR
U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, Montana 59936, USA
Department of Geosciences, University of Montana, Missoula, Montana 59801, USA
Joel Harper
Department of Geosciences, University of Montana, Missoula, Montana 59801, USA
Daniel Fagre
U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, Montana 59936, USA
Johnnie Moore
Department of Geosciences, University of Montana, Missoula, Montana 59801, USA
Erich Peitzsch
U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, Montana 59936, USA
Related authors
No articles found.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Joel Harper, Toby Meierbachtol, Neil Humphrey, Jun Saito, and Aidan Stansberry
The Cryosphere, 15, 5409–5421, https://doi.org/10.5194/tc-15-5409-2021, https://doi.org/10.5194/tc-15-5409-2021, 2021
Short summary
Short summary
We use surface and borehole measurements to investigate the generation and fate of basal meltwater in the ablation zone of western Greenland. The rate of basal meltwater generation at borehole study sites increases by up to 20 % over the winter period. Accommodation of all basal meltwater by expansion of isolated subglacial cavities is implausible. Other sinks for water do not likely balance basal meltwater generation, implying water evacuation through a connected drainage system in winter.
Ian E. McDowell, Neil F. Humphrey, Joel T. Harper, and Toby W. Meierbachtol
The Cryosphere, 15, 897–907, https://doi.org/10.5194/tc-15-897-2021, https://doi.org/10.5194/tc-15-897-2021, 2021
Short summary
Short summary
Ice temperature controls rates of internal deformation and the onset of basal sliding. To identify heat transfer mechanisms and englacial heat sources within Greenland's ablation zone, we examine a 2–3-year continuous temperature record from nine full-depth boreholes. Thermal decay after basal crevasses release heat in the near-basal ice likely produces the observed cooling. Basal crevasses in Greenland can affect the basal ice rheology and indicate a potentially complex basal hydrologic system.
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021, https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary
Short summary
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past 400 years in the northern Rocky Mountains, USA. Sizable avalanches occur approximately every 3 years across the region. Our results emphasize the importance of sample size, scale, and spatial extent when reconstructing avalanche occurrence across a region. This work can be used for infrastructure planning and avalanche forecasting operations.
Rosemary Leone, Joel Harper, Toby Meierbachtol, and Neil Humphrey
The Cryosphere, 14, 1703–1712, https://doi.org/10.5194/tc-14-1703-2020, https://doi.org/10.5194/tc-14-1703-2020, 2020
Short summary
Short summary
Horizontal ice flow transports the firn layer of Greenland’s Percolation Zone as it undergoes burial by accumulation. Here we show that the firn density and temperature fields can reflect horizontal advection of the firn column across climate gradients, the magnitude of which varies around the ice sheet. Further, time series of melt features in ice cores from the percolation zone can contain a signature from ice motion that should not be conflated with that from climate change.
Benjamin H. Hills, Joel T. Harper, Toby W. Meierbachtol, Jesse V. Johnson, Neil F. Humphrey, and Patrick J. Wright
The Cryosphere, 12, 3215–3227, https://doi.org/10.5194/tc-12-3215-2018, https://doi.org/10.5194/tc-12-3215-2018, 2018
Short summary
Short summary
At its surface, an ice sheet is closely connected to the climate. Assessing heat transfer between near-surface ice and the overlying atmosphere is important for understanding how the ice sheet is melting at the surface. We measured ice temperature within 20 m of the surface of the Greenland Ice Sheet. Resulting ice temperatures are warmer than the air, a peculiar result which implies the role of some nonconductive heat transfer processes such as latent heating by refreezing meltwater.
Joel Brown, Joel Harper, and Neil Humphrey
The Cryosphere, 11, 669–679, https://doi.org/10.5194/tc-11-669-2017, https://doi.org/10.5194/tc-11-669-2017, 2017
Short summary
Short summary
We use ground-penetrating radar surveys in conjunction with borehole depth and temperature data to estimate the liquid water content (wetness) of glacial ice in the ablation zone of an outlet glacier on the western side of the Greenland Ice Sheet. Our results show that the wetness of a warm basal ice layer is approximately 2.9 % to 4.6 % in our study region. This high level of wetness requires special attention when modelling ice dynamics or estimating ice thickness in the region.
Adam M. Clark, Daniel B. Fagre, Erich H. Peitzsch, Blase A. Reardon, and Joel T. Harper
Earth Syst. Sci. Data, 9, 47–61, https://doi.org/10.5194/essd-9-47-2017, https://doi.org/10.5194/essd-9-47-2017, 2017
Short summary
Short summary
Most of the alpine glaciers in the world are shrinking. Because of the impact glaciers have on watershed hydrology, the US Geological Survey began a surface mass balance measurement program on Sperry Glacier in Glacier National Park, Montana, USA, in 2005. Between then and 2015 the USGS employed standard methods to estimate the mass changes across the surface of the glacier. During this 11-year period, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m of water equivalent.
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
C. Cox, N. Humphrey, and J. Harper
The Cryosphere, 9, 691–701, https://doi.org/10.5194/tc-9-691-2015, https://doi.org/10.5194/tc-9-691-2015, 2015
Short summary
Short summary
On the Greenland Ice Sheet, a significant quantity of surface melt water refreezes after infiltrating into the cold underlying firn. This paper presents a new method for estimating the amount of water refreezing using temperature measurements. The method is applied to temperature data from a transect of 11 sites and the results provide some of the first measurement-based estimates of refreezing quantities which can be used to improve modeling and better understand the refreezing process.
Related subject area
Discipline: Glaciers | Subject: Mass Balance Obs
Reanalysis of the longest mass balance series in Himalaya using nonlinear model: Chhota Shigri Glacier (India)
Accumulation by avalanches as significant contributor to the mass balance of a High Arctic mountain glacier
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data
Characteristics of mountain glaciers in the northern Japanese Alps
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains
Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra
Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations
Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016
Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China
Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada
Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys
Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations
Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
EGUsphere, https://doi.org/10.5194/egusphere-2024-644, https://doi.org/10.5194/egusphere-2024-644, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological method to compute the mass balances as the former can capture the spatiotemporal variability of point mass balances from a heterogeneous in-situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
Bernhard Hynek, Daniel Binder, Michele Citterio, Signe Hillerup Larsen, Jakob Abermann, Geert Verhoeven, Elke Ludewig, and Wolfgang Schöner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-157, https://doi.org/10.5194/tc-2023-157, 2023
Revised manuscript accepted for TC
Short summary
Short summary
A strong avalanche event in winter 2018 caused thick snow deposits on Freya Glacier, a mountain glacier in Northeast Greenland. The avalanche deposits led to positive elevation changes during the study period 2013–2021 and altered the mass balance of the glacier significantly. The eight year mass balance was positive, it would have been negative without avalanches. The contribution from snow avalanches might become more important with rising temperatures in the Arctic.
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023, https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
Short summary
The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Martina Barandun and Eric Pohl
The Cryosphere, 17, 1343–1371, https://doi.org/10.5194/tc-17-1343-2023, https://doi.org/10.5194/tc-17-1343-2023, 2023
Short summary
Short summary
Meteorological and glacier mass balance data scarcity introduces large uncertainties about drivers of heterogeneous glacier mass balance response in Central Asia. We investigate the consistency of interpretations derived from various datasets through a systematic correlation analysis between climatic and static drivers with mass balance estimates. Our results show in particular that even supposedly similar datasets lead to different and partly contradicting assumptions on dominant drivers.
Jakub Małecki
The Cryosphere, 16, 2067–2082, https://doi.org/10.5194/tc-16-2067-2022, https://doi.org/10.5194/tc-16-2067-2022, 2022
Short summary
Short summary
This study presents a snapshot of the recent state of small mountain glaciers across the European High Arctic, where severe climate warming has been occurring over the past years. The analysis revealed that this class of ice mass might melt away from many study sites within the coming two to five decades even without further warming. Glacier changes were, however, very variable in space, and some glaciers have been gaining mass, but the exact drivers behind this phenomenon are unclear.
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106, https://doi.org/10.5194/tc-16-1091-2022, https://doi.org/10.5194/tc-16-1091-2022, 2022
Short summary
Short summary
In recent years, seven glaciers are confirmed in the northern Japanese Alps. However, their mass balance has not been clarified. In this study, we calculated the seasonal and continuous annual mass balance of these glaciers during 2015–2019 by the geodetic method using aerial images and SfM–MVS technology. Our results showed that the mass balance of these glaciers was different from other glaciers in the world. The characteristics of Japanese glaciers provide new insights for earth science.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606, https://doi.org/10.5194/tc-14-2597-2020, https://doi.org/10.5194/tc-14-2597-2020, 2020
Short summary
Short summary
How to mitigate the melting of most mountainous glaciers is a disturbing issue for scientists and the public. We chose the Muz Taw Glacier of the Sawir Mountains as our study object. We carried out two artificial precipitation experiments on the glacier to study the role of precipitation in mitigating its melting. The average mass loss from the glacier decreased by over 14 %. We also propose a possible mechanism describing the role of precipitation in mitigating the melting of the glaciers.
Shuang Yi, Chunqiao Song, Kosuke Heki, Shichang Kang, Qiuyu Wang, and Le Chang
The Cryosphere, 14, 2267–2281, https://doi.org/10.5194/tc-14-2267-2020, https://doi.org/10.5194/tc-14-2267-2020, 2020
Short summary
Short summary
High-Asia glaciers have been observed to be retreating the fastest in the southeastern Tibeten Plateau, where vast amounts of glacier and snow feed the streamflow of the Brahmaputra. Here, we provide the first monthly glacier and snow mass balance during 2002–2017 based on satellite gravimetry. The results confirm previous long-term decreases but reveal strong seasonal variations. This work helps resolve previous divergent model estimates and underlines the importance of meltwater.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Wael Abdel Jaber, Helmut Rott, Dana Floricioiu, Jan Wuite, and Nuno Miranda
The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, https://doi.org/10.5194/tc-13-2511-2019, 2019
Short summary
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
Chunhai Xu, Zhongqin Li, Huilin Li, Feiteng Wang, and Ping Zhou
The Cryosphere, 13, 2361–2383, https://doi.org/10.5194/tc-13-2361-2019, https://doi.org/10.5194/tc-13-2361-2019, 2019
Short summary
Short summary
We take Urumqi Glacier No. 1 as an example and validate a long-range terrestrial laser scanner (TLS) as an efficient tool for monitoring annual and intra-annual mass balances, especially for inaccessible glacier areas where no glaciological measurements are available. The TLS has application potential for glacier mass-balance monitoring in China. For wide applications of the TLS, we can select some benchmark glaciers and use stable scan positions and in-situ-measured densities of snow–firn.
Ben M. Pelto, Brian Menounos, and Shawn J. Marshall
The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019, https://doi.org/10.5194/tc-13-1709-2019, 2019
Short summary
Short summary
Changes in glacier mass are the direct response to meteorological conditions during the accumulation and melt seasons. We derived multi-year, seasonal mass balance from airborne laser scanning surveys and compared them to field measurements for six glaciers in the Columbia and Rocky Mountains, Canada. Our method can accurately measure seasonal changes in glacier mass and can be easily adapted to derive seasonal mass change for entire mountain ranges.
Daniel McGrath, Louis Sass, Shad O'Neel, Chris McNeil, Salvatore G. Candela, Emily H. Baker, and Hans-Peter Marshall
The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, https://doi.org/10.5194/tc-12-3617-2018, 2018
Short summary
Short summary
Measuring the amount and spatial pattern of snow on glaciers is essential for monitoring glacier mass balance and quantifying the water budget of glacierized basins. Using repeat radar surveys for 5 consecutive years, we found that the spatial pattern in snow distribution is stable over the majority of the glacier and scales with the glacier-wide average. Our findings support the use of sparse stake networks for effectively measuring interannual variability in winter balance on glaciers.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Cited articles
Alden, C.: Glaciers of Glacier National Park, Department of the Interior,
Washington, D.C., USA, 48 pp., 1914.
Baker, E. H., O'Neel, S., Fagre, D. B., Whorton, E. N., Sass, L. C., McNeil,
C. J., Peitzsch, E. H., Clark, A. M., Florentine, C. E., and McGrath, D.:
USGS Benchmark Glacier Mass Balance and Project Data: 1966–2016, U.S.
Geological Survey data release, https://doi.org/10.5066/F7BG2N8R, 2018.
Carrara, P. E.: Late Quaternary Glacial and Vegetative History of the
Glacier National Park Region, Montana, U.S. Geological Survey Bulletin 1902,
U.S. Department of the Interior, Washington D.C., 1989.
Carturan, L., Baldassi, G. A., Bondesan, A., Calligaro, S., Carton, A.,
Cazorzi, F., Dalla Fontana, G., Francese, R., Guarnieri, A., Milan, N., Moro,
D., and Tarolli, P.: Current Behaviour and Dynamics of the Lowermost Italian
Glacier (Montasio Occidentale, Julian Alps), Geogr. Ann. A, 95, 79–96,
https://doi.org/10.1111/geoa.12002, 2013.
Carturan, L., Cazorzi, F., De Blasi, F., and Dalla Fontana, G.: Air
temperature variability over three glaciers in the Ortles–Cevedale (Italian
Alps): effects of glacier fragmentation, comparison of calculation methods,
and impacts on mass balance modeling, The Cryosphere, 9, 1129–1146,
https://doi.org/10.5194/tc-9-1129-2015, 2015.
Clark, A. M., Fagre, D. B., Peitzsch, E. H., Reardon, B. A., and Harper, J.
T.: Glaciological measurements and mass balances from Sperry Glacier,
Montana, USA, years 2005–2015, Earth Syst. Sci. Data, 9, 47–61,
https://doi.org/10.5194/essd-9-47-2017, 2017.
Cogley, J. G., Hock, R., Rassmussen, L. A., Arendt, A. A., Bauder, A.,
Braithwaite, R. J., Jansson, P., Kaser, G., Moller, M., Nicholson, L., and
Zemp, M.: Glossary of mass balance and related terms, IHP-VII Technical
Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.,
2011.
Cuffey, K. M. and Patterson, W. S. B.: The Physics of Glaciers, 4th edn.,
Elsevier, Oxford, 2010.
DeBeer, C. M. and Sharp, M. J.: Recent changes in glacier area and volume
within the southern Canadian Cordillera, Ann. Glaciol., 46, 215–221,
https://doi.org/10.3189/172756407782871710, 2007.
DeBeer, C. M. and Sharp, M. J.: Topographic influences on recent changes of
very small glaciers in the monashee mountains, British Columbia, Canada,
J. Glaciol., 55, 691–700, https://doi.org/10.3189/002214309789470851, 2009.
Dyurgerov, M. B. and Meier, M. F.: Twentieth century climate change: Evidence
from small glaciers, P. Natl. Acad. Sci. USA, 97, 1406–1411, 2000.
ESRI: ArcGIS Desktop: Release 10.3.1, 2014.
Fagre, D. B., McKeon, L. A., Dick, L. A., and Fountain, A. G.: Glacier margin
time series (1966, 1998, 2005, 2015) of the named glaciers of Glacier
National Park, MT, USA, U.S. Geol. Surv. data release, 2017.
Fahey, M.: National Civil Applications Program, U.S. Geological Survey,
Reston, VA, USA, 2014.
Fu, P. and Rich, P. M.: A geometric solar radiation model with applications
in agriculture and forestry, Comput. Electron. Agr., 37, 25–35,
https://doi.org/10.1016/S0168-1699(02)00115-1, 2002.
Gillan, B. J., Harper, J. T., and Moore, J. N.: Timing of present and future
snowmelt from high elevations in northwest Montana, Water Resour. Res., 46,
W01507, doi:10.1029/2009WR007861, 2010.
Hannah, D. M., Gurnell, A. M., and McGregor, G. R.: Spatio-temporal variation
in microclimate, the surface energy balance and ablation over a cirque
glacier, Int. J. Climatol., 20, 733–758,
https://doi.org/10.1002/1097-0088(20000615)20:7<733::AID-JOC490>3.0.CO;2-F,
2000.
Haugen, B. D., Scambos, T. A., Pfeffer, W. T., and Anderson, R. S.:
Twentieth-century Changes in the Thickness and Extent of Arapaho Glacier,
Front Range, Colorado, Arct. Antarct. Alp. Res., 42, 198–209,
https://doi.org/10.1657/1938-4246-42.2.198, 2010.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol.,
282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Hoffman, M. J., Fountain, A. G., and Achuff, J. M.: 20th-century variations
in area of cirque glaciers and glacierets, Rocky Mountain National Park,
Rocky Mountains, Colorado, USA, Ann. Glaciol., 46, 349–354,
https://doi.org/10.3189/172756407782871233, 2007.
Huss, M.: Density assumptions for converting geodetic glacier volume change
to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013,
2013.
Huss, M. and Fischer, M.: Sensitivity of Very Small Glaciers in the Swiss
Alps to Future Climate Change, Front. Earth Sci., 4, 34,
https://doi.org/10.3389/feart.2016.00034, 2016.
Huss, M., Hock, R., Bauder, A., and Funk, M.: 100-year mass changes in the
Swiss Alps linked to the Atlantic Multidecadal Oscillation, Geophys. Res.
Lett., 37, L10501, https://doi.org/10.1029/2010GL042616, 2010.
Johnson, A.: Grinnell and Sperry Glaciers, Glacier National Park, Montana: A
record of vanishing ice, Geol. Surv. Open-File Rep., 1180, 1–29, 1980.
Kaser, G., Fountain, A., Jansson, P., Heucke, E., and Knaus, M.: A manual for
monitoring the mass balance of mountain glaciers, UNESCO, 137 pp., 2003.
Kuhn, M.: The mass balance of very small glaciers, Zeitschrift für
Gletscherkunde und Glazialgeologie, 31, 171–179, 1995.
Laha, S., Kumari, R., Singh, S., Mishra, A., Sharma, T., Banerjee, A.,
Nainwal, H. C., and Shankar, R.: Evaluating the contribution of avalanching
to the mass balance of Himalayan glaciers, Ann. Glaciol., 58, 110–118,
https://doi.org/10.1017/aog.2017.27, 2017.
McCabe, G. J. and Dettinger, M. D.: Primary Modes and Predictability of
Year-to-Year Snowpack Variations in the Western United States from
Teleconnections with Pacific Ocean Climate, J. Hydrometeorol., 3, 13–25,
https://doi.org/10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2,
2002.
Naegeli, K. and Huss, M.: Sensitivity of mountain glacier mass balance to
changes in bare-ice albedo, Ann. Glaciol., 58, 119–129,
https://doi.org/10.1017/aog.2017.25, 2017.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of
satellite elevation data sets for quantifying glacier thickness change, The
Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Østrem, G. and Brugman, M.: Glacier Mass Balance Measurements: A Manual
for Field and Office Work, Minister of Supply and Services, Environment
Canada and Norwegian Water Resources and Energy Administration, 224 pp.,
1991.
Outcalt, S. J. and MacPhail, D. D.: A survey of Neoglaciation in the Front
Range of Colorado, University of Colorado Press, Boulder, CO, 1965.
Pederson, G. T., Gray, S. T., Ault, T., Marsh, W., Fagre, D. B., Bunn, A. G.,
Woodhouse, C. A., and Graumlich, L. J.: Climatic controls on the snowmelt
hydrology of the northern Rocky Mountains, J. Climate, 24, 1666–1687,
https://doi.org/10.1175/2010JCLI3729.1, 2011.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as
categorical evidence of regional climate change, Nat. Geosci., 10, 95–99,
https://doi.org/10.1038/ngeo2863, 2017.
Ruiz, L., Berthier, E., Viale, M., Pitte, P., and Masiokas, M. H.: Recent
geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes,
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, 2017.
Selkowitz, D. J., Fagre, D. B., and Reardon, B. A.: Interannual variations in
snowpack in the Crown of the Continent Ecosystem, Hydrol. Process., 16,
3651–3665, https://doi.org/10.1002/hyp.1234, 2002.
Sibson, R.: A Brief Description of Natural Neighbor Interpolation, in
Interpolating Multivariate Data, John Wiley & Sons, New York, 21–36,
1981.
Smith, M. J., Goodchild, M. F., and Longley, P. A.: Geospatial Analysis: A
Comprehensive Guide to Principles Techniques and Software Tools, 6th edn.,
Troubador Publishing Ltd., London, UK, 2018.
Thomson, L. I., Zemp, M., Copland, L., Cogley, J. G., and Ecclestone, M. A.:
Comparison of geodetic and glaciological mass budgets for White Glacier, Axel
Heiberg Island, Canada, J. Glaciol., 63, 55–66, https://doi.org/10.1017/jog.2016.112,
2017.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of
Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3,
524–538,
https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2,
2002.
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C.,
Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson,
P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and
Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The
Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013.
Zhang, B.: Towards a higher level of automation in softcopy photogrammetry:
NGATE and LiDAR processing in SOCET SET®, in:
GeoCue Corporation 2nd Annual Technical Exchange Conference, Nashville,
Tennessee, 26–27 September 2006, 32 pp., 2006.