Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1665-2018
https://doi.org/10.5194/tc-12-1665-2018
Research article
 | 
18 May 2018
Research article |  | 18 May 2018

Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

Sanggyun Lee, Hyun-cheol Kim, and Jungho Im

Related authors

Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data
Sanggyun Lee, Hyangsun Han, Jungho Im, Eunna Jang, and Myong-In Lee
Atmos. Meas. Tech., 10, 1859–1874, https://doi.org/10.5194/amt-10-1859-2017,https://doi.org/10.5194/amt-10-1859-2017, 2017
Short summary
Intercomparison of Terrestrial Carbon Fluxes and Carbon Use Efficiency Simulated by CMIP5 Earth System Models
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536,https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024,https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago: 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2023-2366,https://doi.org/10.5194/egusphere-2023-2366, 2023
Short summary
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary

Cited articles

Aaboe, S., Breivik, L., Sørensen, A., Eastwood, S., and Lavergne, T.: Global Sea Ice Edge and Type Product User's Manual, EUMETSAT OSISAF, France, 2016.
Amani, M., Salehi, B., Mahdavi, S., Granger, J., and Brisco, B.: Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration, GISci. Remote Sens., 54, 779–796, 2017.
Bröhan, D. and Kaleschke, L.: A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E, Remote Sensing, 6, 1451, https://doi.org/10.3390/rs6021451, 2014.
Chase, J. R. and Holyer, R. J.: Estimation of sea ice type and concentration by linear unmixing of Geosat altimeter waveforms, J. Geophys. Res.-Oceans, 95, 18015–18025, https://doi.org/10.1029/JC095iC10p18015, 1990.
Chi, J., Kim, H.-C., and Kang, S.-H.: Machine learning-based temporal mixture analysis of hypertemporal Antarctic sea ice data, Remote Sens. Lett., 7, 190–199, https://doi.org/10.1080/2150704X.2015.1121300, 2016.
Download
Short summary
Arctic sea ice leads play a major role in exchanging heat and momentum between the Arctic atmosphere and ocean. In this study, we propose a novel lead detection approach based on waveform mixture analysis. The performance of the proposed approach in detecting leads was promising when compared to the existing methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters, as it directly uses L1B waveform data.