Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2943-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-2943-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems
Crustal Geophysics and Geochemistry Science Center, US Geological Survey, Denver, CO 80225, USA
now at: Hydrogeophysics Group, Aarhus University, 8000 Aarhus, Denmark
Trevor P. Irons
Department of Civil and Environmental Engineering, Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84112, USA
Burke J. Minsley
Crustal Geophysics and Geochemistry Science Center, US Geological Survey, Denver, CO 80225, USA
Neal J. Pastick
Stinger Ghaffarian Technologies, Inc., Sioux Falls, SD 57198, USA
Department of Forest Resources, University of Minnesota Twin Cities, St. Paul, MN 55108, USA
Dana R. N. Brown
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Bruce K. Wylie
Earth Resources Observation and Science Center, US Geological Survey, Sioux Falls, SD 57198, USA
Related authors
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
M. Andy Kass, Esben Auken, Jakob Juul Larsen, and Anders Vest Christiansen
Geosci. Instrum. Method. Data Syst., 10, 313–323, https://doi.org/10.5194/gi-10-313-2021, https://doi.org/10.5194/gi-10-313-2021, 2021
Short summary
Short summary
We have developed a towed magnetic gradiometer system for rapid acquisition of magnetic and magnetic gradient maps. This high-resolution system is flexible and has applications to utility detection, archaeology, unexploded ordnance, or any other applications where high-resolution maps of the magnetic field or gradient are required. Processing of the data has been simplified as much as possible to facilitate rapid results and interpretations.
Boxin Zuo, Mason Andrew Kass, Xiangyun Hu, and Meixia Geng
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2016-75, https://doi.org/10.5194/npg-2016-75, 2017
Preprint retracted
Short summary
Short summary
Gravity gradiometry is the study and measurement of spatial change rate of gravitational acceleration. In this paper, we develop an eigenvector analysis method to locate the centroids and horizontal boundaries of sources of gravity gradient data. The proposed method can provide a clear map of the buried complex geological sources. It can be used as an effective tool for locating the positions of exploration wells, or in 3D gravity gradient inversion algorithms.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
M. Andy Kass, Esben Auken, Jakob Juul Larsen, and Anders Vest Christiansen
Geosci. Instrum. Method. Data Syst., 10, 313–323, https://doi.org/10.5194/gi-10-313-2021, https://doi.org/10.5194/gi-10-313-2021, 2021
Short summary
Short summary
We have developed a towed magnetic gradiometer system for rapid acquisition of magnetic and magnetic gradient maps. This high-resolution system is flexible and has applications to utility detection, archaeology, unexploded ordnance, or any other applications where high-resolution maps of the magnetic field or gradient are required. Processing of the data has been simplified as much as possible to facilitate rapid results and interpretations.
Boxin Zuo, Mason Andrew Kass, Xiangyun Hu, and Meixia Geng
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2016-75, https://doi.org/10.5194/npg-2016-75, 2017
Preprint retracted
Short summary
Short summary
Gravity gradiometry is the study and measurement of spatial change rate of gravitational acceleration. In this paper, we develop an eigenvector analysis method to locate the centroids and horizontal boundaries of sources of gravity gradient data. The proposed method can provide a clear map of the buried complex geological sources. It can be used as an effective tool for locating the positions of exploration wells, or in 3D gravity gradient inversion algorithms.
B. J. Minsley, T. P. Wellman, M. A. Walvoord, and A. Revil
The Cryosphere, 9, 781–794, https://doi.org/10.5194/tc-9-781-2015, https://doi.org/10.5194/tc-9-781-2015, 2015
Related subject area
Field Studies
Spectral induced polarization imaging to monitor seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Assessing the key concerns in snow storage: a case study for China
Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: a new method applied to MOSAiC data
Observations and modeling of areal surface albedo and surface types in the Arctic
Ice plate deformation and cracking revealed by an in situ-distributed acoustic sensing array
Brief communication: Alternation of thaw zones and deep permafrost in the cold climate conditions of the East Siberian Mountains, Suntar-Khayata Range
Monitoring glacier calving using underwater sound
Brief communication: Measuring and modelling the ice thickness of the Grigoriev ice cap (Kyrgyzstan) and comparison with global datasets
Elucidation of Spatiotemporal structures from high-resolution blowing snow observations
A field study on ice melting and breakup in a boreal lake, Pääjärvi, in Finland
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Geophysical measurements of the southernmost microglacier in Europe suggest permafrost occurrence in the Pirin Mountains (Bulgaria)
Thickness of multi-year sea ice on the northern Canadian polar shelf: a second look after 40 years
Spectral induced polarization imaging to investigate an ice-rich mountain permafrost site in Switzerland
Contrasting geophysical signatures of a relict and an intact Andean rock glacier
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
Ground-penetrating radar imaging reveals glacier's drainage network in 3D
Evaluating a prediction system for snow management
A portable lightweight in situ analysis (LISA) box for ice and snow analysis
Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica
Implications of surface flooding on airborne estimates of snow depth on sea ice
Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling
First investigation of perennial ice in Winter Wonderland Cave, Uinta Mountains, Utah, USA
A low-cost method for monitoring snow characteristics at remote field sites
Soil respiration of alpine meadow is controlled by freeze–thaw processes of active layer in the permafrost region of the Qinghai–Tibet Plateau
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Revisiting Austfonna, Svalbard, with potential field methods – a new characterization of the bed topography and its physical properties
Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan
The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Supraglacial debris thickness variability: impact on ablation and relation to terrain properties
Pore morphology of polar firn around closure revealed by X-ray tomography
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
Snowmobile impacts on snowpack physical and mechanical properties
Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity
Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach
Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation
Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska
Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Xing Wang, Feiteng Wang, Jiawen Ren, Dahe Qin, and Huilin Li
The Cryosphere, 18, 3017–3031, https://doi.org/10.5194/tc-18-3017-2024, https://doi.org/10.5194/tc-18-3017-2024, 2024
Short summary
Short summary
This work addresses snow storage at sports facilities in China. The snow pile at Big Air Shougang (BAS) lost 158.6 m3 snow (6.7 %) during pre-competition and Winter Olympic competition days in winter 2022. There were no significant variations in the snow quality of the snow piles at BAS and the National Biathlon Center except for in the upper part of the snow piles. The 0.7 and 0.4 m thick cover layers protected half the snow height over the summer at Beijing and Chongli, respectively.
Niels Fuchs, Luisa von Albedyll, Gerit Birnbaum, Felix Linhardt, Natascha Oppelt, and Christian Haas
The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, https://doi.org/10.5194/tc-18-2991-2024, 2024
Short summary
Short summary
Melt ponds are key components of the Arctic sea ice system, yet methods to derive comprehensive pond depth data are missing. We present a shallow-water bathymetry retrieval to derive this elementary pond property at high spatial resolution from aerial images. The retrieval method is presented in a user-friendly way to facilitate replication. Furthermore, we provide pond properties on the MOSAiC expedition floe, giving insights into the three-dimensional pond evolution before and after drainage.
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024, https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated against airborne and ground-based measurements conducted in the European Arctic in different seasons between 2017 and 2022. We found a seasonally dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. The strongest effects of the albedo model bias on the net irradiance were most apparent in the presence of optically thin clouds.
Jun Xie, Xiangfang Zeng, Chao Liang, Sidao Ni, Risheng Chu, Feng Bao, Rongbing Lin, Benxin Chi, and Hao Lv
The Cryosphere, 18, 837–847, https://doi.org/10.5194/tc-18-837-2024, https://doi.org/10.5194/tc-18-837-2024, 2024
Short summary
Short summary
Seismology can help study the mechanism of disintegration of floating ice plates. We conduct a seismic experiment on a frozen lake using a distributed acoustic sensing array. Icequakes and low-frequency events are detected with an artificial intelligence method. Our study demonstrates the merit of distributed acoustic sensing array in illuminating the internal failure process and properties of the ice shelf, which eventually contributes to the understanding and prediction of ice shelf collapse.
Robert Sysolyatin, Sergei Serikov, Anatoly Kirillin, Andrey Litovko, and Maxim Sivtsev
The Cryosphere, 17, 4601–4608, https://doi.org/10.5194/tc-17-4601-2023, https://doi.org/10.5194/tc-17-4601-2023, 2023
Short summary
Short summary
Permafrost conditions of the East Siberian Mountains are poorly known because of the severe climate, extreme terrain, and farness and scarcity of data. The ground temperature regime plays a key role in mountainous regions, influencing the environment, slope stability, geomorphological processes and hydrological processes. We present the results of recent examinations of the permafrost thickness variations, temperature regime of thaw zones (taliks) and permafrost of the Suntar-Khayata Range.
Jarosław Tęgowski, Oskar Glowacki, Michał Ciepły, Małgorzata Błaszczyk, Jacek Jania, Mateusz Moskalik, Philippe Blondel, and Grant B. Deane
The Cryosphere, 17, 4447–4461, https://doi.org/10.5194/tc-17-4447-2023, https://doi.org/10.5194/tc-17-4447-2023, 2023
Short summary
Short summary
Receding tidewater glaciers are important contributors to sea level rise. Understanding their dynamics and developing models for their attrition has become a matter of global concern. Long-term monitoring of glacier frontal ablation is very difficult. Here we show for the first time that calving fluxes can be estimated from the underwater sounds made by icebergs impacting the sea surface. This development has important application to understanding the response of glaciers to warming oceans.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Kouichi Nishimura, Masaki Nemoto, Yoichi Ito, Satoru Omiya, Kou Shimoyama, and Hirofumi Niiya
EGUsphere, https://doi.org/10.5194/egusphere-2023-1845, https://doi.org/10.5194/egusphere-2023-1845, 2023
Short summary
Short summary
It is crucial to consider organized structures such as turbulence sweeps and ejections when discussing the onset and development of snow transport. This study aims to systematically measure blowing and drifting snow to investigate their spatiotemporal structures. To achieve this goal, we have deployed fifteen Snow Particle Counters (SPCs) in designated test areas and are conducting measurements using an equal number of ultrasonic anemometers, providing high temporal resolution data.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Gergana Georgieva, Christian Tzankov, and Atanas Kisyov
The Cryosphere, 16, 4847–4863, https://doi.org/10.5194/tc-16-4847-2022, https://doi.org/10.5194/tc-16-4847-2022, 2022
Short summary
Short summary
The southernmost microglacier in Europe is Snezhnika in the Pirin Mountains, Bulgaria. We use geophysical methods to investigate its thickness and the subsurface structure beneath it. While its size has been well monitored for more than 20 years, information about its thickness is poor. Our results show the presence of ice-rich permafrost near Snezhnika, which was observed in 3 consecutive years. Our results provide important information on the extent and the state of permafrost in Bulgaria.
Humfrey Melling
The Cryosphere, 16, 3181–3197, https://doi.org/10.5194/tc-16-3181-2022, https://doi.org/10.5194/tc-16-3181-2022, 2022
Short summary
Short summary
The Canadian polar shelf has the world’s thickest old sea ice. Its islands impede ice drift to warmer seas. The first year of data from up-looking sonar viewing this shelf’s ice reveal that thick (> 3 m) old ice remains plentiful here, in contrast to its growing scarcity elsewhere. Arctic circulation continues to pack ice against the islands and during storms to create by ridging the very thick ice found here. This study reveals the importance of ridging to the mass balance of Arctic sea ice.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Giulia de Pasquale, Rémi Valois, Nicole Schaffer, and Shelley MacDonell
The Cryosphere, 16, 1579–1596, https://doi.org/10.5194/tc-16-1579-2022, https://doi.org/10.5194/tc-16-1579-2022, 2022
Short summary
Short summary
We presented a geophysical study of one intact and one relict rock glacier in semi-arid Chile. The interpretation of the collected data through different methods identifies geophysical signature differences between the two rock glaciers and characterizes their subsurface structure and composition. This is of great importance because of rock glaciers' relevant role in freshwater production, transfer and storage, especially in this area of increasing human pressure and high rainfall variability.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Jeffrey S. Munroe
The Cryosphere, 15, 863–881, https://doi.org/10.5194/tc-15-863-2021, https://doi.org/10.5194/tc-15-863-2021, 2021
Short summary
Short summary
This study investigated a cave in Utah (USA) that contains a deposit of perennial ice. Such ice caves are important sources of information about past climate and are currently threatened by rising temperatures. The origin (precipitation), thickness (3 m), and age (several centuries) of the ice were constrained by a variety of methods. Liquid water recently entered the cave for the first time in many years, suggesting a destabilization of the cave environment.
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021, https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
Short summary
Snow cover is critical to everyday life for people around the globe. Regular measurements of snow cover usually occur only in larger communities because snow monitoring equipment is costly. In this study, we developed a new low-cost method for estimating snow depth and tested it continuously for 1 year at six remote field locations in coastal Labrador, Canada. Field testing suggests that this new method provides a promising option for researchers in need of a low-cost snow measurement system.
Junfeng Wang, Qingbai Wu, Ziqiang Yuan, and Hojeong Kang
The Cryosphere, 14, 2835–2848, https://doi.org/10.5194/tc-14-2835-2020, https://doi.org/10.5194/tc-14-2835-2020, 2020
Short summary
Short summary
The active layer, a buffer between permafrost and the atmosphere, is more sensitive and responds more quickly to climate change. How the freeze–thaw action at different stages regulates carbon emissions is still unclear. We conducted 2-year continuous in situ measurements in an alpine meadow permafrost ecosystem in the Qinghai–Tibet Plateau and found the freeze–thaw process modified the Rs dynamics differently in different stages. Results suggest great changes in freeze–thaw process patterns.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Short summary
This study explores the capacity to apply ambient noise interferometry to passive seismic recordings in glaciers. Green's function between two seismometers represents the impulse response of the elastic medium. It can be approximated from cross-correlation of random seismic wave fields. For glaciers, its recovery is notoriously difficult due to weak ice seismic scattering. We propose three methods to bridge the gap and show the potential for passive seismic imaging and monitoring of glaciers.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Marie-Andrée Dumais and Marco Brönner
The Cryosphere, 14, 183–197, https://doi.org/10.5194/tc-14-183-2020, https://doi.org/10.5194/tc-14-183-2020, 2020
Short summary
Short summary
The subglacial bed of Austfonna is investigated using potential field methods. Airborne gravity data provide a new bed topography, improving on the traditional ground-penetrating radar measurements. Combined with airborne magnetic data, a 2-D forward model reveals the heterogeneity of the subsurface lithology and the physical properties of the bed. Our approach also assesses the presence of softer bed, carbonates and magmatic intrusions under Austfonna, which contribute to subglacial processes.
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019, https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019, https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary
Short summary
Wind-blown snow does not lie flat. It forms dunes, ripples, and anvil-shaped sastrugi. These features ornament much of the snow on Earth and change the snow's effects on polar climates, but they have rarely been studied. We spent three winters watching snow move through the Colorado Front Range and present our findings here, including the first time-lapse videos of snow dune and sastrugi growth.
Lindsey I. Nicholson, Michael McCarthy, Hamish D. Pritchard, and Ian Willis
The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, https://doi.org/10.5194/tc-12-3719-2018, 2018
Short summary
Short summary
Ground-penetrating radar of supraglacial debris thickness is used to study local thickness variability. Freshly emergent debris cover appears to have higher skewness and kurtosis than more mature debris covers. Accounting for debris thickness variability in ablation models can result in markedly different ice ablation than is calculated using the mean debris thickness. Slope stability modelling reveals likely locations for locally thin debris with high ablation.
Alexis Burr, Clément Ballot, Pierre Lhuissier, Patricia Martinerie, Christophe L. Martin, and Armelle Philip
The Cryosphere, 12, 2481–2500, https://doi.org/10.5194/tc-12-2481-2018, https://doi.org/10.5194/tc-12-2481-2018, 2018
Short summary
Short summary
Three-dimensional imaging of the pore network of polar firn from Antarctica was realized in order to relate the morphological evolution of pores with their progressive closure with depth. Evaluating the closed porosity was found to be very dependent on the size of samples and image reconstructions. A connectivity index, which is a parameter less dependent on such issues, was proposed and proved to accurately predict the close-off depths and densities of two polar sites.
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018, https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary
Short summary
We present and compare 11 years of snow data measured by an automatic weather station and corroborated by data from field campaigns on the Forni Glacier in Italy. The methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total snow water equivalent (SWE) using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Steven R. Fassnacht, Jared T. Heath, Niah B. H. Venable, and Kelly J. Elder
The Cryosphere, 12, 1121–1135, https://doi.org/10.5194/tc-12-1121-2018, https://doi.org/10.5194/tc-12-1121-2018, 2018
Short summary
Short summary
We conducted a series of experiments to determine how snowpack properties change with varying snowmobile traffic. Experiments were initiated at a shallow (30 cm) and deep (120 cm) snow depth at two locations. Except for initiation at 120 cm, snowmobiles significantly changed the density, hardness, ram resistance, and basal layer crystal size. Temperature was not changed. A density change model was developed and tested. The results inform management of lands with snowmobile traffic.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
William L. Cable, Vladimir E. Romanovsky, and M. Torre Jorgenson
The Cryosphere, 10, 2517–2532, https://doi.org/10.5194/tc-10-2517-2016, https://doi.org/10.5194/tc-10-2517-2016, 2016
Short summary
Short summary
Permafrost temperatures in Alaska are increasing, yet in many areas we lack data needed to assess future changes and potential risks. In this paper we show that classifying the landscape into landcover types is an effective way to scale up permafrost temperature data collected from field monitoring sites. Based on these results, a map of mean annual ground temperature ranges at 1 m depth was produced. The map should be useful for land use decision making and identifying potential risk areas.
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, https://doi.org/10.5194/tc-8-801-2014, 2014
A. Gusmeroli and G. Grosse
The Cryosphere, 6, 1435–1443, https://doi.org/10.5194/tc-6-1435-2012, https://doi.org/10.5194/tc-6-1435-2012, 2012
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
Cited articles
Akagawa, S. and Syouji, H.: Relation between T2 of pulse NMR and unfrozen water thickness, in: Proceedings of Hokkaido Branch of Japanese Geotechnical Society, Sapporo, Japan, 75–78, 2004 (in Japanese).
Anderson, D.: Ice nucleation and the substrate-ice interface, Nature, 216, 563–566, https://doi.org/10.1038/216563a0, 1967.
Behroozmand, A. A., Keating, K., and Auken, E.: A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization, Surv. Geophys., 36, 27–85, https://doi.org/10.1007/s10712-014-9304-0, 2015.
Blunt, M. et al.: A1 synthetic silica μCT image, imperial College Consortium on Pore-scale Modelling, https://doi.org/10.6084/m9.figshare.1189255.v1, 2014.
Brown, J., Jorgenson, M., Smith, O., and Lee, W.: Long-term rates of coastal erosion and carbon input, Elson Lagoon, Barrow, Alaska, in: Eighth International Conference on Permafrost, Balkema Publishers, Zurich, Switzerland, 101–106, 2003.
Brownstein, K. and Tarr, C.: Importance of classical diffusion in NMR studies of water in biological cells, Phys. Rev. A, 19, 2446–2453, 1979.
Churaev, N., Bardasov, S., and Sobolev, V.: On the non-freezing water interlayers between ice and a silica surface, Colloid. Surface. A, 79, 11–24, https://doi.org/10.1016/0927-7757(93)80155-8, 1993.
Davis, N.: Permafrost, a guide to frozen ground in transition, U. of Alaska Press, Fairbanks, AK, 2001.
Dong, H. and Blunt, M. J.: Pore-network extraction from micro-computerized-tomography images, Phys. Rev. E, 80, 036307, https://doi.org/10.1103/PhysRevE.80.036307, 2009.
Henry, K. and Smith, M.: A model-based map of ground temperatures for the permafrost regions of Canada, Permafrost Periglac., 12, 389–398, https://doi.org/10.1002/ppp.399, 2001.
Hinzman, L., Bettez, N., Bolton, W., et al.: Evidence and implications of recent climate change in northern Alaska and other arctic regions, Climatic Change, 72, 251–298, https://doi.org/10.1007/s10584-005-5352-2, 2005.
Hugelius, G., Strauss, J., Zubrzycki, S., Hardin, J., Schuur, E., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G., Koven, C., O'Donnell, J., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jorgenson, M., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J., Schuur, E., Kanevskiy, M., and Marchenko, S.: Resilience and vulnerability of permafrost to climate change, Can. J. Forest Res., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010.
Jorgenson, M., Harden, J., Kanevskiy, M., O'Donnell, J., Wickland, K., Eqing, S., Manies, K., Zhuang, Q., Shur, Y., Striegl, R., and Koch, J.: Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes, Environ. Res. Lett., 8, https://doi.org/10.1088/1748-9326/8/3/035017, 2013.
Kenyon, W.: Petrophysical principles of applications of NMR logging, The Log Analyst, 38, 21–43, 1997.
Kleinberg, R.: Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter ρ2, Magn. Reson. Imaging, 14, 761–767, 1996.
Kleinberg, R. and Griffin, D.: NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments, Cold Reg. Sci. Technol., 45, 63–77, https://doi.org/10.1016/j.coldregions.2004.12.002, 2005.
Knight, R., Grunewald, E., Irons, T., Dlubac, K., Song, Y., Bachman, H. N., Grau, B., Walsh, D., Abraham, J. D., and Cannia, J.: Field experiment provides ground truth for surface nuclear magnetic resonance measurement, Gephys. Res. Lett., 39, L03304, https://doi.org/10.1029/2011GL050167, 2012.
Knight, R., Walsh, D. O., Butler, J. J., Grunewald, E., Liu, G., Parsekian, A. D., Reboulet, E. C., Knobbe, S., and Barrows, M.: NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers, Groundwater, 54, 104–114, https://doi.org/10.1111/gwat.12324, 2016.
Konavalov, A. and Romain, L.: The thermophysical properties of peat soils, Soil Mech. Found. Eng., 10, 179–181, https://doi.org/10.1007/BF01706681, 1973.
Kuroda, T.: Theoretical study of frost heaving – Kinetic processes at water layer between ice lens and soil particles, in: Proceedings of the 4th International Symposium on Ground Freezing, Sapporo, Japan, 39–45, 1985.
Lara, M., Genet, H., McGuire, A., Euskirchen, E., Zhang, Y., Brown, D., Jorgenson, M., Romanovsky, V., Breen, A., and Bolton, W.: Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland, Glob. Change Biol., 22, 816–829, https://doi.org/10.1111/gcb.13124, 2016.
Legchenko, A., Baltassat, J.-M., Bobachev, A., Martin, C., Robain, H., and Vouillamoz, J.-M.: Magnetic resonance sounding applied to aquifer characterization, Ground Water, 42, 363–373, 2004.
Meiboom, S. and Gill, D.: Modified spin-echo method for measuring nuclear relaxation times, Rev. Sci. Instrum., 29, 688–691, https://doi.org/10.1063/1.1716296, 1958.
Minsley, B., Pastick, N., Wylie, B., Brown, D., and Kass, M.: Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014, Data release, US Geological Survey, https://doi.org/10.5066/F7959FM0, 2016a.
Minsley, B., Pastick, N., Wylie, B., Brown, D., and Kass, M.: Evidence for nonuniform permafrost degradation after fire in boreal landscapes, J. Geophys. Res., 121, 320–355, https://doi.org/10.1002/2015JF003781, 2016b.
Osterkamp, T., Viereck, L., Shur, Y., Jorgenson, M., Racine, C., Doyle, A., and Boone, R.: Observations of thermokarst in boreal forests in Alaska, Arct. Antarct. Alp. Res., 32, 303–315, https://doi.org/10.2307/1552529, 2000.
Pallatt, N. and Thornly, D.: The role of bound water and capillary water in the evaluation of porosity in reservoir rocks, in: First Society of Core Analysis European Core Analysis Symposium, London, UK, 223–238, 1990.
Parsekian, A., Dlubac, K., Grunewald, E., Butler, J., Knight, R., and Walsh, D.: Bootstrap Calibration and Uncertainty Estimation of Downhole NMR Hydraulic Conductivity Estimates in an Unconsolidated Aquifer, Groundwater, 53, 111–121, https://doi.org/10.1111/gwat.12165, 2015.
Parsekian, A. D., Grosse, G., Walbrecker, J. O., Müller-Petke, M., Keating, K., Liu, L., Jones, B. M., and Knight, R.: Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance, Geophys. Res. Lett., 40, 535–540, https://doi.org/10.1002/grl.50137, 2013.
Pastick, N., Jorgenson, M., Wylie, B., Nield, S., Johnson, K., and Finley, A.: Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions, Remote Sens. Environ., 168, 301–315, https://doi.org/10.1016/j.rse.2015.07.019, 2015.
Romanovsky, V. and Osterkamp, T.: Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost, Permafrost Periglac., 11, 219–239, https://doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7, 2000.
Schuur, E., McGuire, A., Schädel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon feedback, Nature, 521, 171–179, https://doi.org/10.1038/nature14338, 2015.
Song, Y.: Recent Progress of Nuclear Magnetic Resonance Applications in Sandstones and Carbonate Rocks, Vadose Zone J., 9, 828–834, https://doi.org/10.2136/vzj2009.0171, 2010.
Sparrman, T., Öquist, M., Klemedtsson, L., Schleucher, J., and Nilsson, M.: Quantifying unfrozen water in frozen soil by high-field 2H NMR, Environ. Sci. Technol., 38, 5420–5425, https://doi.org/10.1021/es0493695, 2004.
Talabi, O. A.: Pore-scale simulation of NMR response in porus media, PhD dissertation, Department of Earth Science and Engineering, Imperial College London, available at: http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/software/nmr-simulation-codes/, 2008.
Talabi, O., AlSayari, S., Iglauer, S., and Blunt, M. J.: Pore-scale simulation of NMR response, J. Petrol. Sci. Eng., 67, 168–178, https://doi.org/10.1016/j.petrol.2009.05.013, 2009.
Tarnocai, C., Canadell, J., Schuur, E., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cy., 23, 1–11, https://doi.org/10.1029/2008GB003327, 2009.
Walsh, D., Turner, P., Grunewald, E., Zhang, H., Butler Jr., J., Reboulet, E., Knobbe, S., Christy, T., Lane Jr., J., Johnson, C., Munday, T., and Fitzpatrick, A.: A small-diameter NMR logging tool for groundwater investigations, Groundwater, 51, 914–926, https://doi.org/10.1111/gwat.12024, 2013.
Walsh, D., Grunewald, E., Turner, P., Hinnell, A., and Ferre, T.: Surface NMR instrumentation and methods for detecting and characterizing water in the vadose zone, Near Surf. Geophys., 12, 103–111, https://doi.org/10.3997/1873-0604.2013066, 2014.
Watanabe, K. and Mizoguchi, M.: Amount of unfrozen water in frozen porus media saturated with solution, Cold Reg. Sci. Technol., 34, 103–110, https://doi.org/10.1016/S0165-232X(01)00063-5, 2002.
Watanabe, K. and Wake, T.: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR, Cold Reg. Sci. Technol., 59, 34–41, https://doi.org/10.1016/j.coldregions.2009.05.011, 2009.
Williams, P.: Unfrozen water content of frozen soils and soil moisture suction, Géotechnique, 14, 231–246, https://doi.org/10.1680/geot.1964.14.3.231, 1964.
Williams, P. and Smith, M.: The frozen Earth, Cambridge University Press, Cambridge, UK, 1989.
Xiao, L., Qiang Mao, Z., Nian Wang, Z., and Jin, Y.: Application of NMR logs in tight gas reservoirs for formation evaluation: A case study of Sichuan basin in China, J. Petrol. Sci. Eng., 81, 182–195, https://doi.org/10.1016/j.petrol.2011.12.025, 2012.
Yoshikawa, K. and Hinzman, L.: Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska, Permafrost Periglac., 14, 151–160, https://doi.org/10.1002/ppp.451, 2003.
Zhang, T., Barry, R., Knowles, K., Heginbottom, J., and Brown, J.: Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere, Polar Geography, 23, 132–154, https://doi.org/10.1080/10889379909377670, 1999.
Zimov, S., Davydov, S. P., Zimova, G., Davydova, A., Schuur, E., Dutta, K., and Chapin, F.: Permafrost carbon: stock and decomposability of a globally dignificant carbon pool, Geophys. Res. Lett., 33, L20502, https://doi.org/10.1029/2006GL027484, 2006.
Short summary
Geophysical methods have wide applications to permafrost studies. We show that borehole nuclear magnetic resonance is a valuable geophysical tool to rapidly characterize the liquid water content and unfrozen pore space in warm permafrost through simulation and field study. This technique is also sensitive to the ice nucleation process in situ. This method, which is applicable in a variety of soil types, can be used for single observations or for time-lapse monitoring of permafrost changes.
Geophysical methods have wide applications to permafrost studies. We show that borehole nuclear...