Articles | Volume 10, issue 2
The Cryosphere, 10, 811–823, 2016
https://doi.org/10.5194/tc-10-811-2016
The Cryosphere, 10, 811–823, 2016
https://doi.org/10.5194/tc-10-811-2016

Research article 15 Apr 2016

Research article | 15 Apr 2016

Constraining variable density of ice shelves using wide-angle radar measurements

Reinhard Drews et al.

Related authors

Polarimetric radar reveals the spatial distribution of ice fabric at domes in East Antarctica
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-370,https://doi.org/10.5194/tc-2020-370, 2021
Preprint under review for TC
Short summary
Comparison of regolith physical and chemical characteristics with geophysical data along a climate and ecological gradient, Chilean Coastal Cordillera (26 to 38° S)
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020,https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020,https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Kinematic response of ice-rise divides to changes in ocean and atmosphere forcing
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019,https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica
Sophie Berger, Reinhard Drews, Veit Helm, Sainan Sun, and Frank Pattyn
The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017,https://doi.org/10.5194/tc-11-2675-2017, 2017
Short summary

Related subject area

Antarctic
Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties
Mira Berdahl, Gunter Leguy, William H. Lipscomb, and Nathan M. Urban
The Cryosphere, 15, 2683–2699, https://doi.org/10.5194/tc-15-2683-2021,https://doi.org/10.5194/tc-15-2683-2021, 2021
Short summary
Retention time of lakes in the Larsemann Hills oasis, East Antarctica
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021,https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
A pilot study about microplastics and mesoplastics in an Antarctic glacier
Miguel González-Pleiter, Gissell Lacerot, Carlos Edo, Juan Pablo Lozoya, Francisco Leganés, Francisca Fernández-Piñas, Roberto Rosal, and Franco Teixeira-de-Mello
The Cryosphere, 15, 2531–2539, https://doi.org/10.5194/tc-15-2531-2021,https://doi.org/10.5194/tc-15-2531-2021, 2021
Short summary
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades
Celia A. Baumhoer, Andreas J. Dietz, Christof Kneisel, Heiko Paeth, and Claudia Kuenzer
The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021,https://doi.org/10.5194/tc-15-2357-2021, 2021
Short summary
Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021,https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary

Cited articles

Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009jf001306, 2010.
Arthern, R. J., Corr, H. F. J., Gillet-Chaulet, F., Hawley, R. L., and Morris, E. M.: Inversion for the density-depth profile of polar firn using a stepped-frequency radar, J. Geophys. Res.-Earth, 118, 1257–1263, https://doi.org/10.1002/jgrf.20089, 2013.
Barrett, E. B., Murray, T., and Clark, R.: Errors in Radar CMP Velocity Estimates Due to Survey Geometry, and Their Implication for Ice Water Content Estimation, J. Environ. Eng. Geoph., 12, 101–111, https://doi.org/10.2113/JEEG12.1.101, 2007.
Bender, M., Sowers, T., and Brook, E.: Gases in ice cores, P. Natl. Acad. Sci. USA, 94, 8343–8349, https://doi.org/10.1073/pnas.94.16.8343, 1997.
Blindow, N., Suckro, S. K., Rückamp, M., Braun, M., Schindler, M., Breuer, B., Saurer, H., Simões, J. C., and Lange, M. A.: Geometry and thermal regime of the King George Island ice cap, Antarctica, from GPR and GPS, Ann. Glaciol., 51, 103–109, https://doi.org/10.3189/172756410791392691, 2010.
Download
Short summary
The thickness of ice shelves is typically inferred using hydrostatic equilibrium which requires knowledge of the firn density. Here, we infer density from wide-angle radar using a novel algorithm including traveltime inversion and ray tracing. We find that firn is denser inside a 2 km wide ice-shelf channel which is confirmed by optical televiewing of two boreholes. Such horizontal density variations must be accounted for when using the hydrostatic ice thickness for determining basal melt rate.