Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-811-2016
https://doi.org/10.5194/tc-10-811-2016
Research article
 | 
15 Apr 2016
Research article |  | 15 Apr 2016

Constraining variable density of ice shelves using wide-angle radar measurements

Reinhard Drews, Joel Brown, Kenichi Matsuoka, Emmanuel Witrant, Morgane Philippe, Bryn Hubbard, and Frank Pattyn

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Reinhard Drews on behalf of the Authors (07 Mar 2016)  Author's response   Manuscript 
ED: Publish subject to minor revisions (Editor review) (15 Mar 2016) by Robert Bingham
AR by Reinhard Drews on behalf of the Authors (19 Mar 2016)  Author's response   Manuscript 
ED: Publish as is (31 Mar 2016) by Robert Bingham
AR by Reinhard Drews on behalf of the Authors (31 Mar 2016)
Download
Short summary
The thickness of ice shelves is typically inferred using hydrostatic equilibrium which requires knowledge of the firn density. Here, we infer density from wide-angle radar using a novel algorithm including traveltime inversion and ray tracing. We find that firn is denser inside a 2 km wide ice-shelf channel which is confirmed by optical televiewing of two boreholes. Such horizontal density variations must be accounted for when using the hydrostatic ice thickness for determining basal melt rate.