Articles | Volume 10, issue 2
The Cryosphere, 10, 665–679, 2016
https://doi.org/10.5194/tc-10-665-2016
The Cryosphere, 10, 665–679, 2016
https://doi.org/10.5194/tc-10-665-2016

Research article 16 Mar 2016

Research article | 16 Mar 2016

Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

Roberto Sergio Azzoni et al.

Related authors

GLACIER VOLUME CHANGE MONITORING FROM UAV OBSERVATIONS: ISSUES AND POTENTIALS OF STATE-OF-THE-ART TECHNIQUES
M. Di Rita, D. Fugazza, V. Belloni, G. Diolaiuti, M. Scaioni, and M. Crespi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1041–1048, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020,https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020, 2020
MONITORING ALPINE GLACIERS FROM CLOSE-RANGE TO SATELLITE SENSORS
V. Yordanov, D. Fugazza, R. S. Azzoni, M. Cernuschi, M. Scaioni, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1803–1810, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019, 2019
1845–2016 gridded dataset of monthly precipitation over the upper Adda river basin: a comparison with runoff series
Alice Crespi, Michele Brunetti, Maurizio Maugeri, Roberto Ranzi, and Massimo Tomirotti
Adv. Sci. Res., 15, 173–181, https://doi.org/10.5194/asr-15-173-2018,https://doi.org/10.5194/asr-15-173-2018, 2018
Short summary
TECHNICAL ASPECTS RELATED TO THE APPLICATION OF SFM PHOTOGRAMMETRY IN HIGH MOUNTAIN
M. Scaioni, J. Crippa, M. Corti, L. Barazzetti, D. Fugazza, R. Azzoni, M. Cernuschi, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1029–1036, https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018,https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018, 2018
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018,https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary

Related subject area

Alpine Glaciers
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021,https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021,https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary

Cited articles

Aoki, T., Aoki, T., Fukabori, M., Tachibana, Y., Zaizen, Y., Nishio, F., and Oishi, T.: Spectral albedo observation on the snow field at Barrow, Alaska, Polar Meteorol. Glaciol., 12, 1–9, 1998.
Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.: Atmospheric aerosol deposition on snow surfaces and its effect on albedo, Sola, 2, 13–16, 2006.
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, W. J.: A distributed surface energy-balance model for a small valley glacier. Development and testing for Haut Glacier d'Arolla,Valais, Switzerland, J. Glaciol., 42, 77–89, 1996.
Bolch, T.: Debris, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer Publications, Utrecht, the Netherlands, 186–188, 2011.
Brock, B. W.: An analysis of short-term albedo variations at Haut Glacier d'Arolla, Switzerland, Geogr. Ann. A, 86, 53–65, 2004.
Download
Short summary
In spite of quite abundant literature focusing on fine debris deposition over snow of glacier accumulation areas, less attention has been paid to the ice of the glacier melting surface. Accordingly, we developed a method for estimating ice albedo from fine debris cover quantified by a semi-automatic method. Our procedure was tested on the surface of the Forni Glacier (Italian Alps), acquiring parallel data sets of in situ measurements of ice albedo and high-resolution images.