Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-665-2016
https://doi.org/10.5194/tc-10-665-2016
Research article
 | 
16 Mar 2016
Research article |  | 16 Mar 2016

Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

Roberto Sergio Azzoni, Antonella Senese, Andrea Zerboni, Maurizio Maugeri, Claudio Smiraglia, and Guglielmina Adele Diolaiuti

Related authors

GLACIER VOLUME CHANGE MONITORING FROM UAV OBSERVATIONS: ISSUES AND POTENTIALS OF STATE-OF-THE-ART TECHNIQUES
M. Di Rita, D. Fugazza, V. Belloni, G. Diolaiuti, M. Scaioni, and M. Crespi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1041–1048, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020,https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020, 2020
MONITORING ALPINE GLACIERS FROM CLOSE-RANGE TO SATELLITE SENSORS
V. Yordanov, D. Fugazza, R. S. Azzoni, M. Cernuschi, M. Scaioni, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1803–1810, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019, 2019
1845–2016 gridded dataset of monthly precipitation over the upper Adda river basin: a comparison with runoff series
Alice Crespi, Michele Brunetti, Maurizio Maugeri, Roberto Ranzi, and Massimo Tomirotti
Adv. Sci. Res., 15, 173–181, https://doi.org/10.5194/asr-15-173-2018,https://doi.org/10.5194/asr-15-173-2018, 2018
Short summary
TECHNICAL ASPECTS RELATED TO THE APPLICATION OF SFM PHOTOGRAMMETRY IN HIGH MOUNTAIN
M. Scaioni, J. Crippa, M. Corti, L. Barazzetti, D. Fugazza, R. Azzoni, M. Cernuschi, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1029–1036, https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018,https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018, 2018
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018,https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary

Related subject area

Alpine Glaciers
Brief Communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Forentine, and Andrew Fountain
EGUsphere, https://doi.org/10.5194/egusphere-2023-2408,https://doi.org/10.5194/egusphere-2023-2408, 2023
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023,https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023,https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023,https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary

Cited articles

Aoki, T., Aoki, T., Fukabori, M., Tachibana, Y., Zaizen, Y., Nishio, F., and Oishi, T.: Spectral albedo observation on the snow field at Barrow, Alaska, Polar Meteorol. Glaciol., 12, 1–9, 1998.
Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.: Atmospheric aerosol deposition on snow surfaces and its effect on albedo, Sola, 2, 13–16, 2006.
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, W. J.: A distributed surface energy-balance model for a small valley glacier. Development and testing for Haut Glacier d'Arolla,Valais, Switzerland, J. Glaciol., 42, 77–89, 1996.
Bolch, T.: Debris, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer Publications, Utrecht, the Netherlands, 186–188, 2011.
Brock, B. W.: An analysis of short-term albedo variations at Haut Glacier d'Arolla, Switzerland, Geogr. Ann. A, 86, 53–65, 2004.
Download
Short summary
In spite of quite abundant literature focusing on fine debris deposition over snow of glacier accumulation areas, less attention has been paid to the ice of the glacier melting surface. Accordingly, we developed a method for estimating ice albedo from fine debris cover quantified by a semi-automatic method. Our procedure was tested on the surface of the Forni Glacier (Italian Alps), acquiring parallel data sets of in situ measurements of ice albedo and high-resolution images.