Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-665-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-665-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps
Roberto Sergio Azzoni
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Milan, Italy
Antonella Senese
CORRESPONDING AUTHOR
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Milan, Italy
Andrea Zerboni
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Milan, Italy
Maurizio Maugeri
Università degli Studi di Milano, Dipartimento di Fisica, Milan, Italy
Claudio Smiraglia
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Milan, Italy
Guglielmina Adele Diolaiuti
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Milan, Italy
Related authors
No articles found.
M. Di Rita, D. Fugazza, V. Belloni, G. Diolaiuti, M. Scaioni, and M. Crespi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1041–1048, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1041-2020, 2020
V. Yordanov, D. Fugazza, R. S. Azzoni, M. Cernuschi, M. Scaioni, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1803–1810, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1803-2019, 2019
Alice Crespi, Michele Brunetti, Maurizio Maugeri, Roberto Ranzi, and Massimo Tomirotti
Adv. Sci. Res., 15, 173–181, https://doi.org/10.5194/asr-15-173-2018, https://doi.org/10.5194/asr-15-173-2018, 2018
Short summary
Short summary
The gridded dataset of 1845–2016 monthly precipitation series over the upper Adda river basin is presented. It allows to study the evolution of the precipitation regime over the region and to reconstruct extreme past events. The areal 1845–2016 annual precipitation series over the basin is in overall agreement with annual runoff. While the precipitation series shows no significant trend, a significant decrease is pointed out for runoff, probably driven by both natural and anthropic causes.
M. Scaioni, J. Crippa, M. Corti, L. Barazzetti, D. Fugazza, R. Azzoni, M. Cernuschi, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1029–1036, https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018, https://doi.org/10.5194/isprs-archives-XLII-2-1029-2018, 2018
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018, https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary
Short summary
We present and compare 11 years of snow data measured by an automatic weather station and corroborated by data from field campaigns on the Forni Glacier in Italy. The methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total snow water equivalent (SWE) using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Davide Fugazza, Marco Scaioni, Manuel Corti, Carlo D'Agata, Roberto Sergio Azzoni, Massimo Cernuschi, Claudio Smiraglia, and Guglielmina Adele Diolaiuti
Nat. Hazards Earth Syst. Sci., 18, 1055–1071, https://doi.org/10.5194/nhess-18-1055-2018, https://doi.org/10.5194/nhess-18-1055-2018, 2018
Short summary
Short summary
This paper describes the surveys we performed in 2014 and 2016 by means of UAVs and terrestrial photogrammetry to monitor the Forni Glacier, one of the largest glaciers in the Italian Alps. We investigated the hazards related to the glacier collapse, which have been increasing recently due to the high ice melting rate. Our approach is feasible and low cost and we will repeatedly monitor the glacier to provide rapid hazard detection services to help the tourism sector.
M. Scaioni, L. Barazzetti, M. Corti, J. Crippa, R. S. Azzoni, D. Fugazza, M. Cernuschi, and G. A. Diolaiuti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 445–452, https://doi.org/10.5194/isprs-archives-XLII-3-W4-445-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-445-2018, 2018
M. Scaioni, M. Corti, G. Diolaiuti, D. Fugazza, and M. Cernuschi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1547–1554, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1547-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1547-2017, 2017
Veronica Manara, Michele Brunetti, Angela Celozzi, Maurizio Maugeri, Arturo Sanchez-Lorenzo, and Martin Wild
Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, https://doi.org/10.5194/acp-16-11145-2016, 2016
Short summary
Short summary
This paper presents the temporal evolution of solar radiation over Italy for the 1959–2013 period and discusses possible reasons for differences between all-sky and clear-sky conditions in order to understand which part of the solar radiation variability depends on aerosols or clouds. The results give evidence of a relevant influence of both anthropogenic and natural aerosols on solar radiation long-term variability.
M. Maugeri, M. Brunetti, M. Garzoglio, and C. Simolo
Nat. Hazards Earth Syst. Sci., 15, 2347–2358, https://doi.org/10.5194/nhess-15-2347-2015, https://doi.org/10.5194/nhess-15-2347-2015, 2015
Short summary
Short summary
We investigate 1-day precipitation extremes in Sicily and their frequency distribution, based on a dense data set of high-quality, homogenized station records (1921-2005).
Return levels corresponding to 10-, 50- and 100-year periods are produced on a high-resolution grid using a variant of regional frequency analysis combined with regression techniques.
The results, which clearly reflect the complexity of this region, may be useful in the context of extreme precipitation risk assessment.
C. L. Fyffe, B. W. Brock, M. P. Kirkbride, D. W. F. Mair, N. S. Arnold, C. Smiraglia, G. Diolaiuti, and F. Diotri
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5373-2015, https://doi.org/10.5194/tcd-9-5373-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Dye-tracing of a debris-covered glacier revealed that its hydrological system was not similar to that of a debris-free glacier. Beneath the thick debris covering the lower glacier the drainage system was mainly inefficient, probably due lower sub-debris melt rates causing a lack of the large inputs required to open efficient channels. However, efficient channels opened by the large melt inputs from the debris-free areas did route water from the moulins above the thick debris.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
A. Senese, M. Maugeri, E. Vuillermoz, C. Smiraglia, and G. Diolaiuti
The Cryosphere, 8, 1921–1933, https://doi.org/10.5194/tc-8-1921-2014, https://doi.org/10.5194/tc-8-1921-2014, 2014
U. Minora, D. Bocchiola, C. D'Agata, D. Maragno, C. Mayer, A. Lambrecht, B. Mosconi, E. Vuillermoz, A. Senese, C. Compostella, C. Smiraglia, and G. Diolaiuti
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-2891-2013, https://doi.org/10.5194/tcd-7-2891-2013, 2013
Revised manuscript not accepted
Related subject area
Alpine Glaciers
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Unprecedented Twenty-First Century Glacier Loss on Mt. Hood, Oregon, U.S.A.
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry
Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling
Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates
Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements
Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya
Spatial and temporal variations in glacier aerodynamic surface roughness during the melting season, as estimated at the August-one ice cap, Qilian mountains, China
Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area)
Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)
Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria
The European mountain cryosphere: a review of its current state, trends, and future challenges
Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017
The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)
Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)
Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss
Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes
Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s
Local reduction of decadal glacier thickness loss through mass balance management in ski resorts
Effects of local advection on the spatial sensible heat flux variation on a mountain glacier
Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo
Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery
Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal
Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Nicolas Bakken-French, Stephen J. Boyer, W. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
EGUsphere, https://doi.org/10.5194/egusphere-2024-251, https://doi.org/10.5194/egusphere-2024-251, 2024
Short summary
Short summary
Repeat photography and field mapping find that glaciers on Mt. Hood, Oregon, U.S.A. have lost about 40 % of their area in the first two decades of the 21st century. This unprecedented retreat is under simulated by glacier models, implying recent extreme heatwaves, snow droughts and wildfire particulates may be hastening glacier recession beyond what is simulated from monotonic warming. These glacier models underly future water resource plans, with implications for down-stream communities.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Short summary
Our analysis demonstrates the capability of machine learning models in estimating glacier mass balance in terms of performance metrics and dataset availability. Feature importance analysis suggests that ablation features are significant. This is in agreement with the predominantly negative mass balance observations. We show that ensemble tree models typically depict the best performance. However, neural network models are preferable for biased inputs and kernel-based models for smaller datasets.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023, https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary
Short summary
Temperature-index models have been widely used for glacier mass projections in the future. The ability of these models to capture non-linear responses of glacier mass balance (MB) to high deviations in air temperature and solid precipitation has recently been questioned by mass balance simulations employing advanced machine-learning techniques. Here, we confirmed that temperature-index models are capable of detecting non-linear responses of glacier MB to temperature and precipitation changes.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022, https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Short summary
We investigate fluctuations in Bhutanese lake-terminating glaciers focusing on the dynamics change before and after proglacial lake formation at Thorthormi Glacier (TG) based on photogrammetry, satellite, and GPS surveys. The thinning rate of TG became double compared to before proglacial lake formation, and the flow velocity has also sped up considerably. Those changes would be due to the reduction in longitudinal ice compression by the detachment of the glacier terminus from the end moraine.
Nicole Schaffer and Shelley MacDonell
The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022, https://doi.org/10.5194/tc-16-1779-2022, 2022
Short summary
Short summary
Over the last 2 decades the importance of Andean glaciers, particularly as water resources, has been recognized in both scientific literature and the public sphere. This has led to the inclusion of glaciers in environmental impact assessment and the development of glacier protection laws. We propose three categories that group glaciers based on their environmental sensitivity to hopefully help facilitate the effective application of these measures and evaluation of water resources in general.
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022, https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Short summary
The new Caucasus glacier inventory derived from manual delineation of glacier outlines based on medium-resolution (Landsat, Sentinel) and high-resolution (SPOT) satellite imagery shows the accelerated glacier area loss over the last 2 decades (2000–2020). This new glacier inventory will improve our understanding of climate change impacts at a regional scale and support related modelling studies by providing high-quality validation data.
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021, https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Short summary
We present and compare different geostatistical methods for underglacial bedrock interpolation. Variogram-based interpolations are compared with a multipoint statistics approach on both test cases and real glaciers. Using the modeled bedrock, the ice volume for the Scex Rouge and Tsanfleuron glaciers (Swiss Alps) was estimated to be 113.9 ± 1.6 million cubic meters. Complex karstic geomorphological features are reproduced and can be used to improve the precision of underglacial flow estimation.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021, https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary
Short summary
Glaciers and ice caps are currently the largest contributor to sea level rise. Global monitoring of these regions is a challenging task, and significant differences remain between current estimates. This study looks at glacier changes in High Mountain Asia and the Gulf of Alaska using a new technique, which for the first time makes the use of satellite radar altimetry for mapping ice mass loss over mountain glacier regions possible.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Vincent Peyaud, Coline Bouchayer, Olivier Gagliardini, Christian Vincent, Fabien Gillet-Chaulet, Delphine Six, and Olivier Laarman
The Cryosphere, 14, 3979–3994, https://doi.org/10.5194/tc-14-3979-2020, https://doi.org/10.5194/tc-14-3979-2020, 2020
Short summary
Short summary
Alpine glaciers are retreating at an accelerating rate in a warming climate. Numerical models allow us to study and anticipate these changes, but the performance of a model is difficult to evaluate. So we compared an ice flow model with the long dataset of observations obtained between 1979 and 2015 on Mer de Glace (Mont Blanc area). The model accurately reconstructs the past evolution of the glacier. We simulate the future evolution of Mer de Glace; it could retreat by 2 to 6 km by 2050.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
The Cryosphere, 14, 3235–3247, https://doi.org/10.5194/tc-14-3235-2020, https://doi.org/10.5194/tc-14-3235-2020, 2020
Short summary
Short summary
Simple models of glacier dynamics based on volume–area scaling underestimate climate sensitivity and response time of glaciers. Consequently, they may predict a faster response and a smaller long-term glacier loss. These biases in scaling models are established theoretically and are analysed in detail by simulating the step response of a set of 703 Himalayan glaciers separately by three different models: a scaling model, a 2-D shallow-ice approximation model, and a linear-response model.
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020, https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary
Short summary
Glacier surface roughness during melting season was observed by manual and automatic photogrammetry. Surface roughness was larger at the snow and ice transition zone than in fully snow- or ice-covered areas. Persistent snowfall and rainfall both reduce surface roughness. High or rising turbulent heat as a component of surface energy balance tended to produce a smooth ice surface; low or decreasing turbulent heat tended to produce a rougher surface.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Matthew Olson and Summer Rupper
The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, https://doi.org/10.5194/tc-13-29-2019, 2019
Short summary
Short summary
Solar radiation is the largest energy input for most alpine glaciers. However, many models oversimplify the influence of topographic shading. Also, no systematic studies have explored the variable impact of shading on glacier ice. We find that shading can significantly impact modeled solar radiation, particularly at low elevations, at high latitudes, and for glaciers with a north/south orientation. Excluding the effects of shading will overestimate modeled solar radiation for alpine glaciers.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018, https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Short summary
As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the flow of ice of the Rhine glacier at the Last Glacial Maximum to determine conditions at the ice–bed interface. Results indicate that portions of the ice lobes were at the melting temperature and ice was sliding, two conditions necessary for erosion by glacier. Conditions at the bed of the ice lobes were affected by climate and also by topography.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
Short summary
This study presents a reanalysis of the glacier mass balance record at Hintereisferner, Austria, for the period 2001 to 2011. We provide a year-by-year comparison of glaciological and geodetic mass balances obtained from annual airborne laser scanning data. After applying a series of corrections, a comparison of the methods reveals major differences for certain years. We thoroughly discuss the origin of these discrepancies and implications for future glaciological mass balance measurements.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Jakob F. Steiner, Philip D. A. Kraaijenbrink, Sergiu G. Jiduc, and Walter W. Immerzeel
The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, https://doi.org/10.5194/tc-12-95-2018, 2018
Short summary
Short summary
Glaciers that once every few years or decades suddenly advance in length – also known as surging glaciers – are found in many glaciated regions in the world. In the Karakoram glacier tongues are additionally located at low altitudes and relatively close to human settlements. We investigate a very recent and extremely rapid surge in the region that has caused a lake to form in the main valley with possible risks for downstream communities.
Levan G. Tielidze and Roger D. Wheate
The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018, https://doi.org/10.5194/tc-12-81-2018, 2018
Short summary
Short summary
This is one of the first papers containing the Greater Caucasus glacier area and number change over the 1960–2014 period by individual river basins and countries. During the research we used old topographical maps and Corona imagery from the 1960s, and Landsat/ASTER imagery from 1986/2014. The separate sections and slopes have been revealed where there are the highest indices of the reduction in the area of the glaciers.
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Short summary
In the paper, we demonstrate the potential of field and satellite hyperspectral reflectance data in characterizing the spatial distribution of impurities on the Morteratsch Glacier. In situ reflectance spectra showed that impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier. Laboratory measurements of cryoconite showed the presence of elemental and organic carbon.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Short summary
Our paper assesses the glacier mass change in the northern Patagonian Andes of Argentina and Chile, which is crucial to understanding how climate change is affecting them. We have found that between 2000 and 2012, glaciers in this region were slightly out of balance, with larger valley glaciers losing more mass than smaller mountain glaciers. The slightly negative mass balance of the northern Patagonian Andes contrasts with the highly negative mass balance of the Patagonian ice fields.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Andrea Fischer, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 10, 2941–2952, https://doi.org/10.5194/tc-10-2941-2016, https://doi.org/10.5194/tc-10-2941-2016, 2016
Short summary
Short summary
In the Alps, glacier cover, snow farming and technical snow production were introduced as adaptation measures to climate change one decade ago. Comparing elevation changes in areas with and without mass balance management in five ski resorts showed that locally up to 20 m of ice thickness was preserved compared to non-maintained areas. The method can be applied to maintainance of skiing infrastructure but has also some potential for melt management at high and dry glaciers.
Tobias Sauter and Stephan Peter Galos
The Cryosphere, 10, 2887–2905, https://doi.org/10.5194/tc-10-2887-2016, https://doi.org/10.5194/tc-10-2887-2016, 2016
Short summary
Short summary
The paper deals with the micrometeorological conditions on mountain glaciers. We use idealized large-eddy simulations to study the heat transport associated with the local wind systems and its impact on the energy exchange between atmosphere and glaciers. Our results demonstrate how the sensible heat flux variablility on glaciers is related to topographic effects and that the energy surplus is strong enough to significantly increase the local glacier melting rates.
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016, https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Short summary
Fourteen years of satellite observations are used to monitor the albedo of Brewster Glacier, New Zealand and estimate annual and seasonal balances. This confirms the governing role of the summer balance in the annual balance and allows the reconstruction of the annual balance to 1977 using a photographic record of the snowline. The longest mass balance record for a New Zealand glacier shows negative balances after 2008, yielding a loss of 35 % of the gain accumulated over the previous 30 years.
Joshua M. Maurer, Summer B. Rupper, and Joerg M. Schaefer
The Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016, https://doi.org/10.5194/tc-10-2203-2016, 2016
Short summary
Short summary
Here we utilize declassified spy satellite imagery to quantify ice volume loss of glaciers in the eastern Himalayas over approximately the last three decades. Clean-ice and debris-covered glaciers show similar magnitudes of ice loss, while calving glaciers are contributing a disproportionately large amount to total ice loss. Results highlight important physical processes affecting the ice mass budget and associated water resources in the Himalayas.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Levan G. Tielidze
The Cryosphere, 10, 713–725, https://doi.org/10.5194/tc-10-713-2016, https://doi.org/10.5194/tc-10-713-2016, 2016
Short summary
Short summary
This article presents the percentage and quantitative changes in the number and area of glaciers for all Georgian Caucasus in the years 1911–1960–2014, by individual river basins, by comparing recent Landsat and ASTER images (2014) with older topographical maps (1911, 1960) along with middle and high mountain meteorological stations data.
Cited articles
Aoki, T., Aoki, T., Fukabori, M., Tachibana, Y., Zaizen, Y., Nishio, F., and
Oishi, T.: Spectral albedo observation on the snow field at Barrow, Alaska,
Polar Meteorol. Glaciol., 12, 1–9, 1998.
Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and
Kobayashi, H.: Atmospheric aerosol deposition on snow surfaces and its
effect on albedo, Sola, 2, 13–16, 2006.
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, W.
J.: A distributed surface energy-balance model for a small valley glacier.
Development and testing for Haut Glacier d'Arolla,Valais, Switzerland, J.
Glaciol., 42, 77–89, 1996.
Bolch, T.: Debris, in: Encyclopedia of Snow, Ice and Glaciers, edited by:
Singh, V., Singh, P., and Haritashya, U., Springer Publications, Utrecht,
the Netherlands, 186–188, 2011.
Brock, B. W.: An analysis of short-term albedo variations at Haut Glacier
d'Arolla, Switzerland, Geogr. Ann. A, 86, 53–65, 2004.
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and
parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland,
J. Glaciol., 46, 675–688, 2000.
Brun, F., Dumont, M., Wagnon, P., Berthier, E., Azam, M. F., Shea, J. M.,
Sirguey, P., Rabatel, A., and Ramanathan, Al.: Seasonal changes in surface albedo
of Himalayan glaciers from MODIS data and links with the annual mass balance,
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, 2015.
Casey, K. A.: Supraglacial dust and debris: geochemical compositions from
glaciers in Svalbard, southern Norway, Nepal and New Zealand, Earth Syst. Sci.
Data Discuss., 5, 107–145, https://doi.org/10.5194/essdd-5-107-2012, 2012.
Chiesa, S., Micheli, P., Cariboni, M., Tognini, P., Motta, D., Longhin, M.,
Zambotti, G., Marcato, E., Ferrario, A., Ferliga, C., and Gregnanin, A.:
Note illustrative della Carta Geologica d'Italia: foglio 041, Ponte di
Legno, ISPRA, Servizio Geologico d'Italia, Roma, 2011.
Citterio, M., Diolaiuti, G., Smiraglia, C., Verza, G., and Meraldi, E.:
Initial results from the auto- matic weather station (AWS) on the ablation
tongue of Forni Glacier (Upper Valtellina, Italy), Geogr. Fis. Din. Quat.,
30, 141–151, 2007.
Clarke, A. D. and Noone, J.: Measurements of soot aerosol in Arctic snow,
Atmos. Environ., 19, 2045–2054, 1985.
Conway, J., Gades, A., and Raymond, C. F.: Albedo of dirty snow during
conditions of melt, Water Resour. Res., 32, 1713–1718, 1996.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press,
USA, 715 pp., 2010.
D'Agata, C., Bocchiola, D., Maragno, D., Smiraglia, C., and Diolaiuti, G.:
Glacier shrinkage driven by climate change during half a century
(1954–2007) in the Ortles-Cevedale Group (Stelvio National Park, Lombardy,
Italian Alps), Theor. Appl. Climatol., 116, 169–190, https://doi.org/10.1007/s00704-013-0938-5, 2014.
Diolaiuti, G. and Smiraglia, C.: Changing glaciers in a changing climate:
how vanishing geomorphosites have been driving deep changes in mountain
landscapes and environments, Geomorphologie, 2, 131–152, 2010.
Diolaiuti, G., Smiraglia, C., Verza, G. P., Chillemi, R., and Meraldi, E.:
La rete micrometeorologica glaciale lombarda: un contributo alla conoscenza
dei ghiacciai alpini e delle loro variazioni recenti, in: Clima e Ghiacciai,
la Crisi delle Risorse Glaciali in Lombardia, Regione Lombardia, edited by:
Smiraglia, C., Morandi, G., and Diolaiuti, G., Regione Lombardia, Milan, 69–92,
available at: http://users.unimi.it/glaciol (last access: 5 June 2014), 2009.
Diolaiuti, G., Bocchiola, D., D'Agata, C., and Smiraglia, C.: Evidence of
climate change impact upon glaciers recession within the Italian Alps: the
case of Lombardy glaciers, Theor. Appl. Climatol., 109, 429–445,
https://doi.org/10.1007/s00704-012-0589-y, 2012.
Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J.-R.,
Geyer, M., Morin, S., and Josse, B.: Contribution of light-absorbing
impurities in snow to Greenland's darkening since 2009, Nat. Geosci., 7, 509–512, 2014.
Elzinga, C. L., Salzer, D. W., Willoughby, J. W., and Gibbs, J. P.: Monitoring Plant
and Animal Populations, Blackwell Publishing, Oxford, 368 pp., 2001.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009.
Fugazza, D. Senese A., Azzoni, R. S., Smiraglia, C., Cernuschi, M., Severi,
D., and Diolaiuti, G. A.: High resolution mapping of glacier surface features. The
UAV survey of the Forni Glacier (Stelvio National Park, Italy), Geogr. Fis.
Din. Quat., 38, 25–33, 2015.
Fugazza, D., Senese, A., Azzoni, R. S., Maugeri, M., and Diolaiuti, G. A.: Spatial
distribution of surface albedo at the Forni Glacier (Stelvio National Park,
Central Italian Alps), Cold Reg. Sci. Technol., 125, 128–137, https://doi.org/10.1016/j.coldregions.2016.02.006, 2016.
Fujita, K.: Effect of dust event timing on glacier runoff: sensitivity
analysis for a Tibetan glacier, Hydrol. Process., 21, 2892–2896, 2007.
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A comparison
of empirical and physically based glacier surface melt models for long-term
simulations of glacier response, J. Glaciol., 60, 1140–1154, 2014.
Gale, S. J. and Hoare, P. G.: Quaternary Sediments, Belhaven Press, New York,
323 pp., 1991.
Garavaglia, V., Pelfini, M., Diolaiuti, G., Pasquale, V., and Smiraglia, C.:
Evaluating tourist perception of environmental changes as a contribution to
managing natural resources in glacierized areas. A case study of the Forni
Glacier (Stelvio National Park, Italian Alps), Environ. Manage., 50, 1125–1138,
https://doi.org/10.1007/s00267-012-9948-9, 2012.
Grenfell, T. C.: Albedo, Encyclopedia of Snow, Ice and Glaciers, edited by:
Singh, V., Singh, P., and Haritashya, U., Springer Publications, Utrecht,
the Netherlands, 186–188, 2011.
Guglielmin, M. and Notarpietro, A.: Il permafrost alpino: concetti,
morfologia, metodi di individuazione (con tre indagini esemplificative in
alta Valtellina), Quaderni di Geodinamica Alpina e Quaternaria, Vol. 5, 117 pp., 1997.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice
albedos, P. Natl. Acad. Sci. USA, 101, 423–428, 2004.
Hartmann, D. L.: Global Physical Climatology (International Geophysics),
Academic Press, San Diego, 411 pp., 1994.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolimnol., 25, 101–110, 2001.
Hodson A., Anesio, A. M., Ng, F., Watson, R., Quirk, J., Irvine-Fynn, T.,
Dye, A., Clark, C., McCloy, P., Kohler, J., and Sattler, B.: A glacier
respires: Quantifying the distribution and respiration CO2 flux of
cryoconite across an entire Arctic supraglacial ecosystem, J. Geophys. Res.,
112, G04S36, https://doi.org/10.1029/2007JG000452, 2007.
ImageJ: available at: http://imagej.nih.gov/ij/ (last access: 11 March 2016), 2004.
Irvine-Fynn, T., Bridge, J., and Hodson, A.: Rapid quantification of
cryoconite: granule geometry and in situ supraglacial extents, using
examples from Svalbard and Greenland, J. Glaciol., 56, 297–308, 2010.
Klok, E. J. and Oerlemans, J.: Model study of the spatial distribution of
the energy and mass balance of Morteratschgletscher, Switzerland, J.
Glaciol., 48, 505–518, 2002.
Klok, E. J., Greuell, J. W., and Oerlemans, J.: Temporal and spatial
variation of the surface albedo of the Morteratschgletscher, Switzerland, as
derived from 12 Landsat images, J. Glaciol., 49, 491–502, 2003.
Kolay, P. K. and Singh, D. N.: Physical, chemical, mineralogical, and
thermal properties of cenospheres from an ash lagoon, Cement Concrete Res.,
31, 539–542, 2001.
Ming, M., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., and
Pu, J.: Black Carbon (BC) in the snow of glaciers in West China and its
potential effects on albedos, Atmos. Res., 92, 114–123, 2009.
Montrasio, A., Berra, F., Cariboni, M., Ceriani, M., Deichmann, N., Ferliga,
C., Gregnanin, A., Guerra, S., Guglielmin, M., Jadoul, F., Longhin, M.,
Mair, V., Mazzoccola, D., Sciesa, E., and Zappone, A.: Note illustrative
della Carta Geologica d'Italia: foglio 024, Bormio, ISPRA, Servizio
Geologico d'Italia, Roma, 2008.
Motoyoshi, H., Aoki, T., Hori, M., Abe, O., and Mochizuki, S.: Possible
effect of anthropogenic aerosol deposition on snow albedo reduction at
Shinjo, Japan, J. Meteorol. Soc. Jpn., 83A, 137–148, 2005.
Mullen, P. C. and Warren, S. G.: Theory of the optical properties of lake ice,
J. Geophys. Res., 93, 8403–8414, 1988.
Naegeli, K., Damm, A., Huss, M., Schaepman, M., and Hoelzle, M.: Imaging
spectroscopy to assess the composition of ice surface materials and their
impact on glacier mass balance, Remote Sens. Environ., 168, 388–402, 2015.
Oerlemans, J.: The microclimate of valley glaciers, Utrecht University Ed.,
Utrecht, 2010.
Oerlemans, J., Giesen, R. H., and Van Den Broeke, M. R.: Retreating alpine
glaciers: increased melt rates due to accumulation of dust (Vadret da
Morteratsch, Switzerland), J. Glaciol., 55, 729–736, 2009.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., Van Curen, R. A.,
and Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, P. Natl. Acad. Sci. USA, 110, 15216–15221, 2013.
Paul, F. and Kääb, A.: Perspectives on the production of a glacier
inventory from multispectral satellite data in the Canadian Arctic:
Cumberland Peninsula, Baffin Island, Ann. Glaciol., 42, 59–66, 2005.
Paul, F., Kääb, A., and Haeberli, W.: Recent glacier changes in the
Alps observed from satellite: consequences for future monitoring strategies,
Global Planet. Change, 56, 111–122, 2007.
Pope, A. and Rees, G.: Using in situ spectra to explore Landsat
classification of glacier surfaces, Int. J. Appl. Earth Obs. Geoinf., 27, 42–52, 2014.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on
the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological
cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011.
Ramanathan, V.: Role of Black Carbon in Global and Regional Climate Change,
Testimonial to the House Committee on Oversight and Government Reform,
18 October 2007, available at: http://www-ramanathan.ucsd.edu/files/brt20.pdf
(last access: 5 June 2014), 2007.
Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dange, S., and
Martonchik, J. V.: Reflectance quantities in optical remote sensing – Definitions
and case studies, Remote Sens. Environ., 103, 27–42, 2006.
Senese, A., Diolaiuti, G., Mihalcea, C., and Smiraglia, C.: Meteorological
evolution on the ablation zone of Forni Glacier, Ortles-Cevedale Group
(Stelvio National Park, Italian Alps) during the period 2006–2008, Boll.
Soc. Geogr. Ita., 3, 845–864, 2010.
Senese, A., Diolaiuti, G., Mihalcea, C., and Smiraglia, C.: Energy and mass
balance of Forni Glacier (Stelvio National Park, Italian Alps) from a 4-year
meteorological data record, Arct. Antarct. Alp. Res., 44, 122–134,
https://doi.org/10.1657/1938-4246-44.1.122, 2012a.
Senese, A., Diolaiuti, G., Verza, G. P., and Smiraglia, C.: Surface energy
budget and melt amount for the years 2009 and 2010 at the Forni Glacier
(Italian Alps, Lombardy), Geogr. Fis. Din. Quat., 35, 69–77, 2012b.
Senese, A., Maugeri, M., Vuillermoz, E., Smiraglia, C., and Diolaiuti, G.:
Using daily air temperature thresholds to evaluate snow melting occurrence
and amount on Alpine glaciers by T-index models: the case study of the
Forni Glacier (Italy), The Cryosphere, 8, 1921–1933, https://doi.org/10.5194/tc-8-1921-2014, 2014.
Sodemann, H., Palmer, A. S., Schwierz, C., Schwikowski, M., and Wernli, H.:
The transport history of two Saharan dust events archived in an Alpine ice core,
Atmos. Chem. Phys., 6, 667–688, https://doi.org/10.5194/acp-6-667-2006, 2006.
Takeuchi, N.: Surface albedo and characteristics of cryoconite on an Alaska
glacier (Gulkana Glacier in the Alaska Range), Bull. Glaciol. Res., 19, 63–70, 2002.
Takeuchi, N., Kohshima, S., Yoshimura, Y., Seko, K., and Fujita, K.:
Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier
Central Nepal, Bull. Glaciol. Res., 17, 51–59, 2000.
Takeuchi, N., Kohshima, S., and Seko, K.: Structure, formation, darkening
process of albedo reducing material (cryoconite) on a Himalayan glacier: a
granular algal mat growing on the glacier, Arct. Antarct. Alp. Res., 33, 115–122, 2001.
Takeuchi, N., Matsuda, Y., Sakai, A., and Fujita, K.: A large amount of
biogenic surface dust (cryoconite) on a glacier in the Qilian Mountains,
China, Bull. Glaciol. Res., 22, 1–8, 2005.
Walkley, A. and Black, I. A.: An examination of Degtjareff method for
determining soil organic matter and a proposed modification of the chromic
acid titration method, J. Soil Sci., 37, 29–38, 1934.
Wentworth, C. K.: A scale of grade and class terms for clastic sediments,
J. Geol., 30, 377–392, 1922.
WMO – World Meteorological Organization: Guide to meteorological instruments and
method of observation, 7th Edn., Geneve, 2008.
Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E.,
Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, G., and Lau, K.-M.:
Estimated impact of black carbon deposition during pre-monsoon season from
Nepal Climate Observatory – Pyramid data and snow albedo changes over
Himalayan glaciers, Atmos. Chem. Phys., 10, 6603–6615, https://doi.org/10.5194/acp-10-6603-2010, 2010.
Short summary
In spite of quite abundant literature focusing on fine debris deposition over snow of glacier accumulation areas, less attention has been paid to the ice of the glacier melting surface. Accordingly, we developed a method for estimating ice albedo from fine debris cover quantified by a semi-automatic method. Our procedure was tested on the surface of the Forni Glacier (Italian Alps), acquiring parallel data sets of in situ measurements of ice albedo and high-resolution images.
In spite of quite abundant literature focusing on fine debris deposition over snow of glacier...