Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-433-2016
https://doi.org/10.5194/tc-10-433-2016
Research article
 | Highlight paper
 | 
29 Feb 2016
Research article | Highlight paper |  | 29 Feb 2016

Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method

Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi

Related authors

Snow accumulation and ablation measurements in a mid-latitude mountain coniferous forest (Col de Porte, France, 1325 m alt.): The Snow Under Forest field campaigns dataset
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frederic Berger, Jean Matthieu Monnet, Laurent Borgniet, Eric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-174,https://doi.org/10.5194/essd-2023-174, 2023
Preprint under review for ESSD
Short summary
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
EGUsphere, https://doi.org/10.5194/egusphere-2023-772,https://doi.org/10.5194/egusphere-2023-772, 2023
Short summary
Evaluating Snow Microwave Radiative Transfer (SMRT) model emissivities using observations of Arctic tundra snow
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2023-878,https://doi.org/10.5194/egusphere-2023-878, 2023
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
EGUsphere, https://doi.org/10.5194/egusphere-2023-696,https://doi.org/10.5194/egusphere-2023-696, 2023
Short summary
The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023,https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary

Related subject area

Snow Hydrology
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023,https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022,https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021,https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Fractional snow-covered area: scale-independent peak of winter parameterization
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021,https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary

Cited articles

Albert, M. and Krajeski, G.: A fast, physically based point snowmelt model for use in distributed applications, Hydrol. Process., 12, 1809–1824, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1809: AID-HYP696>3.0.CO;2-5, 1998.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated Regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Campbell, F. M. A., Nienow, P. W., and Purves, R. S.: Role of the supraglacial snowpack in mediating meltwater delivery to the glacier system as inferred from dye tracer investigations, Hydrol. Process., 20, 969–985, https://doi.org/10.1002/hyp.6115, 2006.
Colbeck, S. C., Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., McClung, D., and Morris, E.: The International Classification for Seasonal Snow on the Ground: The International Commission on Snow and Ice of the International Association of Scientific Hydrology, 1990.
Corry, C. E., De Moully, G. T., and Gerety, M. T.: Field Procedure Manual for Self-Potential Surveys, Zonge Engineering and Research Organization Publishing, Arizona USA, 1983.
Download
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.