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Abstract. Our ability to measure, quantify and assimilate

hydrological properties and processes of snow in opera-

tional models is disproportionally poor compared to the sig-

nificance of seasonal snowmelt as a global water resource

and major risk factor in flood and avalanche forecasting.

We show here that strong electrical self-potential fields are

generated in melting in situ snowpacks at Rhone Glacier

and Jungfraujoch Glacier, Switzerland. In agreement with

theory, the diurnal evolution of self-potential magnitudes

(∼ 60–250 mV) relates to those of bulk meltwater fluxes

(0–1.2× 10−6 m3 s−1) principally through the permeability

and the content, electrical conductivity and pH of liquid

water. Previous work revealed that when fresh snow melts,

ions are eluted in sequence and electrical conductivity, pH

and self-potential data change diagnostically. Our snowpacks

had experienced earlier stages of melt, and complementary

snow pit measurements revealed that electrical conductivity

(∼ 1–5× 10−6 S m−1) and pH (∼ 6.5–6.7) as well as per-

meabilities (respectively ∼ 9.7× 10−5 and ∼ 4.3× 10−5 m2

at Rhone Glacier and Jungfraujoch Glacier) were invariant.

This implies, first, that preferential elution of ions was com-

plete and, second, that our self-potential measurements re-

flect daily changes in liquid water contents. These were cal-

culated to increase within the pendular regime from ∼ 1 to 5

and∼ 3 to 5.5 % respectively at Rhone Glacier and Jungfrau-

joch Glacier, as confirmed by ground truth measurements.

We conclude that the electrical self-potential method is a

promising snow and firn hydrology sensor owing to its suit-

ability for (1) sensing lateral and vertical liquid water flows

directly and minimally invasively, (2) complementing es-

tablished observational programs through multidimensional

spatial mapping of meltwater fluxes or liquid water content

and (3) monitoring autonomously at a low cost. Future work

should focus on the development of self-potential sensor ar-

rays compatible with existing weather and snow monitoring

technology and observational programs, and the integration

of self-potential data into analytical frameworks.

1 Introduction

More than a sixth of the world’s population relies on melt

from seasonal snow and glaciers for water supply (Barnett

et al., 2005). Snow, and runoff from snow, are also major

resources for the hydroelectric, tourism and inland fishery

industries, and furthermore represent hazards from flooding

and avalanches (Mitterer et al., 2011). The availability of

snow models constrained by a reliable observational basis,

for the forecasting of snow hydrological properties and pro-

cesses in climate, resource and hazard applications is there-

fore of considerable socio-economic significance (Wever et

al., 2014). However, the parameterisation of fundamental

snow hydrological attributes, such as liquid water content

and flux, is a well-recognised major source of uncertainty in

operational models used in snow and hydrological forecast-

ing (Livneh et al., 2010; Essery et al., 2013). This uncertainty

in operational models is rooted principally in the inability

of traditional snow hydrological techniques to provide au-
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tomated attribute measurements non-invasively and on spa-

tial scales that match those used in operational snow mod-

els. Relevant traditional techniques include dielectric (De-

noth, 1994) or “hand” tests (Fierz et al., 2009) of snow liquid

water contents, lysimeter measurements of discharge, tem-

perature and pH and electrical conductivity of bulk meltwa-

ters (Campbell et al., 2006; Williams et al., 2010) and man-

ual observation or measurement of snow density and grain

size (Fierz et al., 2009). Even cutting-edge upward-looking

radar measurements of snowpack structure and liquid water

content (Heilig et al., 2010; Mitterer et al., 2011; Schmid et

al., 2014) compare unfavourably with model predictions of

wetting front propagation (Wever et al., 2014), attributed to

inherent limitations of the 1-D approach in capturing prefer-

ential flow.

By combining field measurements with a theory and model

of self-potential signals associated with unsaturated flow in

melting snow (Kulessa et al., 2012), we show here that elec-

trical self-potential geophysical data integrated with tradi-

tional snow measurements can address these limitations. The

self-potential technique is a passive geo-electrical method

that exploits the presence of naturally occurring electrical

potentials in the subsurface generated as a result of dipolar

charge separation when water flows through a porous ma-

trix (“streaming potential”; Darnet et al., 2003; Revil et al.,

2006). The self-potential method has a unique ability in de-

lineating, monitoring and quantifying the flow of subsurface

water in groundwater aquifers and unsaturated media (e.g.

Revil et al., 2006, and references therein), and for application

to numerous cold regions (e.g. French et al., 2006; Kulessa,

2007, and references therein). This ability is due to the fact

that porewaters generally have an excess of electrical charge

due to the electrical double layer at the interface between the

solid matrix (in this case snow grains) and porewater. The

advective drag of this excess of electrical charge is respon-

sible for a streaming current, whose divergence generates a

quasi-static electric field known as the streaming potential

(Sill, 1983; Revil et al., 2003). More recently, streaming po-

tential theory has been extended for unsaturated conditions

(Linde et al., 2007; Revil et al., 2007; Jougnot et al., 2012).

A new theory and numerical model of self-potential signals

associated with unsaturated flow in melting snow, along with

laboratory tests, strongly promoted the technique as a non-

intrusive hydrological sensor of water fluxes (Kulessa et al.,

2012) at spatial scales intermediate between snow pits and

satellite footprints or, given independent flux measurements,

of evolving physical and chemical properties of snow and

snowmelt.

We answer two fundamental questions. (1) Can the self-

potential method serve as a non-intrusive field sensor of tem-

porally evolving bulk meltwater fluxes and liquid water con-

tents of snow? (2) What are the ambiguities introduced into

estimates of liquid water contents from self-potential and

bulk discharge data, by uncertainties inherent in the govern-

ing snow physical and chemical properties? Lastly we dis-

cuss the implications and possibilities of the technique for

future snow measurement and modelling research and prac-

tice. Our study thus takes a significant step towards the in situ

implementation of the self-potential method for improved

characterisation and monitoring of snow liquid water con-

tents and meltwater fluxes.

2 Theory, field sites and methods

The Poisson equation relates the electrical field ψ to the

source current density in a partially or fully saturated snow-

pack:

∇ · (σ∇ψ)=∇ · js, (1)

where σ is the bulk electrical conductivity of the porous ma-

terial (in S m−1), and js is the source current density (in

A m−2). Equation (1) applies only in the low-frequency limit

of the Maxwell’s equations without external injection or re-

trieval of charges, or charge storage in the snowpack. Extend-

ing the classic Helmholtz–Smoluchowski theory for unsatu-

rated flow in snow, the 1-D solution to Eq. (1) is given by

ψm−ψ0 =−
εζ

ησw

Sw (Hm−H0) , (2)

where ψm and Hm are respectively the electrical and hy-

draulic potentials at the measurement electrode, ψ0 and H0

are the corresponding potentials at the reference electrode,

ζ is the zeta potential (V), and ε, η, σw and Sw are respec-

tively the dielectric permittivity (F m−1), dynamic viscosity

(in Pa s), electrical conductivity (S m−1) and relative satura-

tion (dimensionless) of the melt- or rainwaters in the snow-

pack’s pore space (Kulessa et al., 2012). The zeta potential is

the voltage across the electrical double layer at the interface

between the ice matrix and the porewaters, as controlled by

these constituents’ physical and electrical properties.

To address the specific objectives set out in the introduc-

tion through data-driven testing, we developed an experimen-

tal survey design to simulate the geometry of the laboratory

snow column of Kulessa et al. (2012) (Fig. 1b). It was there-

fore our aim to characterise bulk meltwater fluxes in inclined

snowpacks at two glaciers in Valais, Switzerland, measur-

ing all relevant snowpack attributes for ground truth. Self-

potential and traditional snow hydrological measurements

were acquired on 13, 14 and 15 June 2013 from the ablation

area snowpack at Rhone Glacier, and on 5 September 2013

from the glacial accumulation area at Jungfraujoch Glacier

(Fig. 1a). At Rhone Glacier and Jungfraujoch Glacier site el-

evations were respectively 2340 and 3460 m a.s.l., with sur-

face gradients of ∼ 8 and 17◦. At the Rhone Glacier all 3

days experienced comparable air temperature, although 15

June was noticeably cloudier with a very low sunshine dura-

tion. Because daily average temperatures were between 5 and

15 ◦C with no fresh snowfall (MeteoSuisse), the snowpacks
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Figure 1. (a) Example survey set-up, self-potential grid 25× 25 m.

The inset on the left shows the location of both field sites. The inset

on the right illustrates the self-potential survey design; to provide

each self-potential data value, a profile of 25 data points (P1, P2,

etc.) was collected (Line 1, Line 2, etc.), perpendicular to assumed

bulk water flow. (b) Schematic of the self-potential experiment de-

veloped by Kulessa et al. (2012) for the situ snowpack surveys.

would have experienced significant melting in the weeks be-

fore the surveys. We therefore expect them to be physically

mature in terms of enhanced grain size and density due to

metamorphosis, and chemically mature in terms of invariant

meltwater pH and electrical conductivity as preferential elu-

tion of solutes has been completed (Kulessa et al., 2012, and

references therein).

At both sites, more than 100 self-potential measurements

were made at the snow surface, and meltwater bulk discharge

in a lysimeter, pH and electrical conductivity, and snow-

pack characteristics including thickness, density, grain size

and liquid water content were recorded. Adopting our estab-

lished acquisition procedures (Thompson et al., 2012), we

conducted all self-potential surveys using a pair of lead/lead

chloride “Petiau” non-polarising electrodes (Petiau, 2000).

The survey was carried out following the potential ampli-

tude method (Corry et al., 1983); this employs a reference

electrode in a fixed location and a roving electrode which is

moved through the survey area at 0.5 m intervals (Fig. 1a).

Self-potential surveys were conducted in profiles of 25 data

points perpendicular to the principal direction of water flow,

where the latter was assumed to follow the gradient indi-

cated by snow surface topography. All self-potential mea-

surements were taken as differential readings relative to the

reference electrode, minimising streaming, electrochemical

and thermal potentials at the latter by grounding them outside

the survey areas at the top of a local topographic high point

(Fig. 1a), submerged in a glass jar, open at the top and filled

with water-saturated local media (Kulessa et al., 2003a). The

jar was then buried upright ∼ 1 m deep to avoid exposure to

surface temperature variations. Surveys were carried out with

a fixed tie-in point (measured every second line) at the refer-

ence electrode, allowing for correction of the effects of elec-

trode polarisation and drift (Doherty et al., 2010; Thompson

et al., 2012).

Bulk discharge through a snowpack is preferably mea-

sured with a lysimeter (Campbell et al., 2006; Williams et

al., 2010), in this case made up of a series of smaller (gutter-

ing) areas joined together to prevent freezing and compaction

(after Campbell et al., 2006). The lysimeter was placed at the

base of Rhone Glacier’s snowpack, and at the limit of the di-

urnal melt penetration depth at Jungfraujoch Glacier (deter-

mined by daily dye-tracing experiments). Snow density (by

balance) and average snow grain size (crystal card and lens)

were measured, at the start and end of each self-potential

survey to reveal any intermittent snow metamorphism, using

standardised techniques within the top and basal layers of

snow pits freshly excavated at the survey sites (Fierz et al.,

2009). Liquid water content was estimated using two differ-

ent techniques, including the hand test (Colbeck et al., 1990;

Fierz et al., 2009) in the surface and base layers of Rhone

Glacier’s snow pit, and the Denoth capacitance meter (De-

noth, 1994) in the surface and base layers of the snow pit

at Jungfraujoch Glacier. The latter measurements were ac-

quired across a 2-D grid where the instrument was inserted

into the snowpack at a depth of 0.4 m following the same

survey spacing as the self-potential measurements.

3 Field measurement results

The drift-corrected self-potential magnitudes and meltwater

bulk discharges both increase with time through the day un-

til a peak in late afternoon, after which they both begin to

decrease (Fig. 2). There is no distinguishable time lag be-

tween the measured self-potential magnitude and discharge

data (Fig. 2), and the ratio between self-potential and bulk

discharge changes consistently over time (Fig. 3). Days 1

and 2 at Rhone Glacier were characterised by higher dis-

charges and self-potential magnitudes compared to day 3,

and intriguingly bulk discharge at Jungfraujoch Glacier was

akin to day 3 at Rhone Glacier, but self-potential magnitudes

at Jungfraujoch Glacier were much higher than days 1 and

2 at Rhone Glacier (Fig. 2). The pH, electrical conductivity

and temperature of meltwater, recorded with each bulk dis-

charge measurement, show no consistent temporal or spatial

variation across any of the four field surveys. Fluid electri-

cal conductivity values generally ranged between 1× 10−6

and 5× 10−6 S m−1 without spatial or temporal consistency,

while pH ranged between 6.5 and 6.9. Snow grain size re-

mained constant at ∼ 1.5 mm at Rhone Glacier and ∼ 1 mm

at Jungfraujoch Glacier, while snow densities ranged be-

tween 555 and 573 kg m−3 without spatial or temporal con-

sistency. The very small variability range of the snowpack

characteristics measured is consistent with mature snow-

packs, as assumed above with reference to prior meteorolog-

ical conditions. At Rhone Glacier the liquid water content of

snow had a wetness index of 3 irrespective of measurement

time or location at the surface or base of the snow pit, associ-

ated with a liquid water content range of 3–8 % vol. (Colbeck

et al., 1990). At Jungfraujoch Glacier liquid water content,

measured using the Denoth meter, gave profile-averaged val-
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Figure 2. Time series of (a) bulk self-potential measurements and

(b) bulk discharge measurements for the three Rhone Glacier sur-

veys and the Jungfraujoch Glacier survey. Each self-potential data

point represents the mean value of a profile (consisting of 25 data

points); the error bars illustrate the variability over each profile.

Bulk discharge was measured over each profile by the lysimeter.

ues of 1.5 to∼ 5.0 % vol., increasing consistently throughout

the survey period. These measurements and inherent uncer-

tainties are used below for snow liquid water content calcu-

lations, uncertainty analysis and sensitivity testing.

4 Objective 1: self-potential as a snow hydrological

sensor

Both survey areas were south facing, topographically in-

clined but otherwise had no visibly distinguished snow sur-

face undulations, and any snow thickness variations were

minimal. We therefore expect changes in self-potential mag-

nitudes to be pronounced in the downslope direction, and

minimal across-slope along any individual profile (Fig. 1a).

Averaging all 25 self-potential data points acquired along any

particular profile, a 1-D upslope–downslope series of self-

potential magnitudes is produced for a given survey area on

a given day, together with uncertainty estimates reflecting

natural spatial and temporal variability along the profile (Ta-
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Figure 3. Ratio between self-potential magnitudes (V) and bulk dis-

charge (m3 s−1) for each of the four surveys through time, illustrat-

ing that the ratio changes consistently over time.

ble 1). For each profile, the acquisition time of the central

data point was assigned to it, and all measurements of snow-

pack and meltwater properties were averaged over the same

time period (∼ 20 min, i.e. the acquisition time of any one

self-potential profile). The upslope–downslope series of av-

erage self-potential magnitudes thus emulates measurements

along a horizontally inclined version of the 1-D snow column

used in Kulessa et al. (2012) (Fig. 1b). These authors refor-

mulated the 1-D solution in Eq. (2) to relate measured self-

potential magnitudes and bulk discharges through their par-

tially saturated snow column, which we can therefore adapt

here to our field experiment.

This adaptation is dependent on four key assumptions, in-

cluding that (1) water flow within the survey areas’ snow-

packs is laminar and homogenous in three dimensions, where

the snowpack surface and base have constant and equal in-

clination and thus maintain a spatially constant hydraulic

gradient; (2) all contributions to the measured self-potential

signal from flow below the base of the snowpack, runoff

at the surface of the snowpack and flow outside the lateral

boundaries of the survey areas’ snowpacks are negligible,

and all water contributing to the measured self-potential sig-

nals is adequately captured by our bulk discharge measure-

ments; (3) all snow physical and chemical properties control-

ling the self-potential magnitude do not vary spatially across

the survey areas’ snowpacks, so that our ground-truth snow-

pit data apply uniformly across them, and (4) any spatial

changes in self-potential magnitudes are dominated by tem-

poral changes in snow or meltwater properties, while static-

elevation- driven spatial changes are negligible. We assess

the implications of any potential violations to these assump-

tions in Sect. 6.

At a given time, tn, the measured self-potential field,

9m(tn), in our survey area is the difference between the

locally produced self-potential field, 9l(tn), and the self-

potential field at the reference electrode, 90(tn). The lat-
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ter is unknown in our field feasibility study, although our

method of emplacing the reference electrode is elaborate and

designed to eliminate, or at least minimise, any streaming

potentials at the reference electrode (see Sect. 2). Once the

reference electrodes have settled in their environments, we

further expect any electrochemical or thermal potentials to

be negligible. We can therefore expect 90(tn) to be close

to zero, but nonetheless apply caution and take a two-step

approach. Initially we eliminate the reference self-potential

fields by considering temporal changes in measured self-

potential magnitudes before, subsequently, considering ab-

solute self-potential magnitudes.

4.1 Temporal changes in self-potential magnitudes

We can eliminate the reference field by differencing two self-

potential measurements acquired at two successive times:

ψm(tn)−ψm(tn−1)=9l(tn)−9l(tn−1). (3)

Equation (3) assumes that 90 and H0 are temporally in-

variant, a reasonable supposition for drift-corrected self-

potential data if the reference electrode is correctly em-

placed. Recognising that ψ0 =H0 ≈ 0 for their snow col-

umn experiment, Kulessa et al. (2012) reformulated Eq. (2)

to show that the self-potential field at a measurement elec-

trode, 9l(tn), can be approximated by

9l(tn)=
εζ

σw

Sw(tn)

Sne (tn)

1

kA
Q(tn), (4)

whereQ (m3 s−1) is bulk discharge in the snowpack through

the cross-sectional areaA (m2), k is permeability, Se is effec-

tive saturation and n≈ 3.3 is the saturation exponent (after

Albert and Krajeski, 1998; Kulessa et al., 2012). Assuming

that any temporal changes in the self-potential field at the ref-

erence electrodes in our field experiments are negligible, the

difference between successive field self-potential measure-

ments in time can be approximated by

ψm(tn)−ψm(tn−1)=
εζ

σw

1

kA

(
Sw(tn)

Sne (tn)
Q(tn)

−
Sw(tn−1)

Sne (tn−1)
Q(tn−1)

)
. (5)

In the present case we have measured ψm(tn) and

9m(tn−1) as well as Q(tn) and Q(tn−1). We have also mea-

sured, or can estimate from well-established empirical rela-

tionships, all other parameters coupling the temporal differ-

ence in self-potential fields (9m(tn) and ψm(tn−1)) to that of

discharge (expression in the large parentheses on the right-

hand side of Eq. 5). To demonstrate the usefulness of self-

potential measurements in snow research and practice, we

can therefore evaluate Eq. (5) at successive times, tn and tn−1,

to calculate temporal changes in the liquid water content, Sw,

of the snowpacks at our field sites. This evaluation is subject

to assumptions (1) to (4) above, and is ground-truthed using

snow pit measurements of liquid water contents.

At both Rhone Glacier and Jungfraujoch Glacier, self-

potential magnitude (ψm), bulk discharge (Q), electrical

conductivity (σw) and cross-sectional area (A) (survey area

width× snow depth) were measured directly. Assuming that

water at 0 ◦C has a dielectric permittivity of εr = 88, the di-

electric permittivity (F m−1) of pore meltwater is ε = εrε0 =

7.8× 10−9 F m−1, where 0 = 8.85× 10−12 F m−1 is the di-

electric permittivity of vacuum. Permeability (k) can be de-

rived from our snow density (ρs) and grain size (d)measure-

ments using Shimizu’s (1970) empirical relationship:

k = 0.077d2e−0.0078ρs , (6)

where k is in m2, d is in m and ρs is in kg m−3. This com-

monly used equation was derived from a fit to laboratory data

collected with small rounded grains and a starting grain di-

ameter of ∼ 0.33 mm (Shimizu, 1970). However, later work

ascertained experimentally that Shimizu’s (1970) empirical

formula does in fact apply to a much larger range of grain di-

ameters, as expected to be encountered in practice (less than

0.33 mm to greater than 2 mm) (Jordan et al., 1999). We can

therefore expect Eq. (6) to be robust for our purposes. Effec-

tive saturation (Se) and Sw are related through the irreducible

water saturation Sir
w by

Se =
Sw− S

ir
w

1− Sir
w

. (7)

In the absence of direct measurements, we adopt the com-

monly used values of Sir
w = 0.03 and n≈ 3.3 (Kulessa et al.,

2012), and assume that these values are invariant in space

and time at our study sites.

A significant challenge arises however in that there is one

remaining parameter, the zeta potential (ζ ), which is un-

known here and poorly constrained in general. Earlier work

on artificial ice samples, of fixed bulk electrical conductiv-

ity, ascertained that the zeta potential reverses sign from

∼+0.01 to ∼−0.02 V as equilibrium pH increases from

less than 3 to greater than 8 (Drzymala et al., 1999; Kallay

et al., 2003). The electrochemical properties of the electri-

cal double layer at the snow grain surfaces, and thus also

the magnitude and potentially the sign of the zeta potential,

will change over time in a fresh snowpack as the snow is

affected by melt, recrystallisation and the preferential elu-

tion of ions (Meyer and Wania, 2008; Meyer et al., 2009;

Williams et al,. 1999). Recent “natural snowmelt” laboratory

experiments were consistent with a progressive increase of

pH from 4.3 to 6.3 and a simultaneous decrease in electrical

conductivity from ∼ 1× 10−1 to ∼ 6× 10−7 S m−1, as the

elution of ions follows a well-known sequence (Kulessa et

al., 2012). Upon conclusion of the laboratory experiments of

Kulessa et al. (2012), modelled rates of change of pH and

electrical conductivity were minimal and the snow column

mature. The zeta potential is principally a function of pH and

www.the-cryosphere.net/10/433/2016/ The Cryosphere, 10, 433–444, 2016
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electrical conductivity, and the combined dependency of the

zeta potential on electrical conductivity (σw), meltwater pH

(pHw) and the meltwater pH at the point of zero charge (pHw)

(pzc)) can be expressed as

ζ (σw,pH)=
[
α+βlog10σw

](
sin

π

12

[
pHw − pHw (pzc)

])
, (8)

where α and β depend on the chemical composition of

the pore fluid and can be determined empirically (Revil et

al., 1999). Kulessa et al. (2012) inferred the zeta potential

changed from ∼−7.5× 10−2 V at the start of the natural

snowmelt experiments to+1.5× 10−2 V at the end, when the

rate of change of the zeta potential was minimal.

The final values of pH and electrical conductivity that

Kulessa et al. (2012) calculated from Eq. 8 were simi-

lar to those measured at Rhone Glacier and Jungfraujoch

Glacier (respectively ∼ 6.5–6.9 and ∼ 1–5× 10−6 S m−1),

suggesting that these in situ snowpacks were likewise ma-

ture as expected (Sect. 2). This inference is corroborated

by the absence of consistent spatial or temporal changes in

either pH or electrical conductivity throughout the survey

periods. In the laboratory study of Kulessa et al. (2012),

the pH-corrected zeta potential had values around zero for

the range of electrical conductivities (1–5× 10−6 S m−1)

measured at Rhone Glacier and Jungfraujoch Glacier (1–

5× 10−6 S m−1), and its rate of change became minimal

along with those of pH and electrical conductivity. We can

therefore expect a small and invariant zeta potential value to

apply to the snowpacks at Rhone Glacier and Jungfraujoch

Glacier. Indeed, an excellent fit (R2
≈ 0.85) between liquid

water contents measured at Jungfraujoch Glacier with the

Denoth meter and that calculated based on Eq. (5) is obtained

when the zeta potential is assigned a value of∼−1×10−5 V

(Fig. 4). This excellent fit suggests that in situ measurements

or empirically derived estimates of the parameters affecting

coupling between measured self-potential magnitudes and

discharges in Eq. (5) are robust for practical purposes.

4.2 Absolute changes in self-potential magnitudes

The same parameters affect the coupling between temporal

changes in self-potential magnitudes and discharge (Eq. 5),

and absolute changes therein as described by Eq. (4) de-

rived by assuming that the reference potential is zero. We

are therefore encouraged to calculate absolute liquid water

contents from our self-potential data using Eq. (4). We do

this initially for Jungfraujoch Glacier because here we have

detailed ground-truth measurements of liquid water content

made with a Denoth meter. Encouragingly we find that cal-

culated and measured ground-truth data match each other

very well (Fig. 5a), attesting to the fact that the reference po-

tentials at Jungfraujoch Glacier may not only be temporally

invariant as confirmed earlier, but generally have negligible

magnitudes.

We can apply the same expectation of negligible reference

self-potential magnitudes to our surveys at Rhone Glacier
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Figure 4. Temporal differences in Sw inferred from self-potential

data against temporal differences in the Denoth-measured Sw at

Jungfraujoch Glacier, according to Eq. (5).
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Figure 5. (a) Liquid water content calculated from Eq. (4) for the

self-potential survey carried out at Jungfraujoch Glacier, with the

corresponding Denoth measurements. The uncertainty range illus-

trates the minimum and maximum model results for the range of pa-

rameters (Table 1). (b) Liquid water content calculated from Eq. (4)

for each of the three self-potential surveys carried out at Rhone

Glacier. All results are within the range of liquid water content

(% vol) estimated by the hand tests (black dashed lines).

on the 3 successive days. We find that absolute liquid water

contents inferred from Eq. (4) generally fall well within the

range of ∼ 3–8 % inferred from our ground-truth hand tests.

We can therefore conclude that given careful emplacement of

the reference electrode, the simple empirical relationship be-
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Table 1. Best estimate of each parameter for Rhone Glacier SP (day 2) and relative assumed uncertainty and sensitivity ranges. The sensitivity

ranges are based on the measurement accuracy of each measured parameter or the confidence of estimates parameters. The uncertainty ranges

are exaggerated from the sensitivity values to highlight the effect of poor measurement or estimation.

Measured/estimated parameters Best estimate Sensitivity range Uncertainty range

Self-potential ψm (V) Variable ψm± 20 % ψm± 40 %

Discharge Q (m3 s−1) Variable Q± 20 % Q± 40 %

Electrical conductivity σw (S m−1) 5× 10−6 σw± 5× 10−7 10−7–10−4

Zeta potential ζ (V) −1× 10−5 ζ ± 50 % 10−4–10−6

Permeability from

grain diameter d (m) 0.00175 d ± 0.0005 d ± 0.001

density ρ (kg m3) 555.5 ρ± 70 ρ± 140

Cross-sectional area from

width w (m) 12.5 w± 5 w± 10

depth dp (m) 1.45 dp± 0.2 dp± 1

tween self-potential magnitudes, discharge and liquid water

content is robust not only in a laboratory setting (Kulessa et

al., 2012), but also for application to in situ snowpacks. The

self-potential method therefore shows considerable promise

as a non-intrusive snow hydrological sensor.

5 Objective 2: self-potential sensitivity to uncertainty

in snow properties

We evaluate the sensitivity of calculated liquid water contents

to both individual and combined parameter uncertainties. For

each parameter a range of uncertainty values was created,

with the respective minima and maxima approximately twice

that of the uncertainty (Table 1). Repeat water content calcu-

lations were carried out initially by changing each parame-

ter individually for a range of values between the respective

minima and maxima. The results cluster broadly in three cat-

egories, including the zeta potential (up to ∼ 20 % change in

liquid water content within the 50 % uncertainty range), fol-

lowed by grain diameter, survey area width, electrical con-

ductivity, snow depth and snow density (∼ 3–4 % change)

and bulk discharge and self-potential (2 % change) (Fig. 6).

These three categories readily reflect our knowledge of or

ability to measure the respective parameters in situ, with sur-

prisingly low sensitivity to cross-sectional area despite our

simplistic calculation and significant inherent assumptions

(i.e. 1–4 in Sect. 4). Self-potential magnitudes are readily

measured in the field with minimum uncertainty (Fig. 6), al-

though the strongly enhanced sensitivity to the zeta potential

highlights the need for focused research to tightly constrain

possible values of this parameter in in situ snowpacks.

While this gives a good indication of the parameters to

which water content calculations are most sensitive, it does

not indicate possible feedbacks between parameters. Feed-

backs were therefore evaluated by calculating liquid water

contents for all possible combinations of the best estimates

and minimum and maximum parameter values (Table 1), giv-

ing over 6500 solutions (Fig. 7). The minimum and maxi-

mum outputs were then adopted as the lower and upper un-

certainty bounds (Fig. 3). Due to the large potential uncer-

tainty in the zeta potential, the sensitivity range was arbitrar-

ily set to ±50 % for illustrative purposes (Sect. 4).

Despite our consideration of extreme potential error

bounds, calculated uncertainties in liquid water contents are

restricted to a relatively small range (∼ 20 % for large as-

sumed uncertainty in the zeta potential, and ∼ 3–4 % other-

wise) at both Rhone Glacier and Jungfraujoch Glacier, and

absolute values remain within the pendular regime where

water bodies in the pore space remain isolated. At the lat-

ter site the daily evolution of liquid water contents thus

is well captured even if uncertainty is taken into account

(Fig. 5b), and likewise at Rhone Glacier, calculated liquid

water contents plus uncertainties still fall within the range

of field measurements (Fig. 5a). Our inferences thus not

only support the notion of Kulessa et al. (2012) that ex-

isting snow hydrological relationships are robust for mod-

elling purposes, but also suggest that they may apply to in

situ field surveys. These inferences can also provide an ex-

planation for the relatively large self-potential magnitudes

generated by relatively low bulk discharge at Jungfraujoch

Glacier (Fig. 2). Because we did not observe or infer any con-

sistent or statistically significant differences between Rhone

Glacier and Jungfraujoch Glacier in dielectric permittivity

(ε), zeta potential (ζ ), saturation (SwS
−n
e ), electrical con-

ductivity (σw) or cross-sectional area (A), the only remain-

ing parameter that could facilitate the observed relative dif-

ference is permeability (k). Indeed, using an average snow

density of 564 kg m−3, the differences in mean snow grain

sizes between Rhone Glacier (1.5× 10−3 m) and Jungfrau-

joch Glacier (1× 10−3 m) translate into respective perme-

abilities of 9.7× 10−5 and 4.3× 10−5 m2. The relatively re-

duced permeability of Jungfraujoch Glacier’s accumulation-

area snowpack therefore likely supported the presence of

self-potential magnitudes that were markedly elevated rel-

ative to Rhone Glacier’s ablation-area snowpack (Eq. 4).
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highlighting the effect of each individual parameter on the calculated Sw output, using Rhone Glacier SP day 2 as an example.
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Figure 7. Full sensitivity analysis for each of the four data sets. Each graph shows the full range of calculated liquid water content (Sw)

values of every combination of minimum, best estimate and maximum for each of the parameters.

This inference emphasises the sensitivity of the self-potential

method to permeability as a fundamental snow hydrological

property, along with its observed sensitivity to bulk meltwa-

ter discharge and inferred sensitivity to liquid water content.

6 Synthesis and conclusions

The ability of the electrical self-potential method to sense

meltwater flow in in situ snowpacks is unique, where self-

potential magnitudes scale directly with discharge and are

zero in the absence of flow. The scaling factor (right side of

Eq. 4) depends principally on the liquid water content of the

snowpack, its permeability and the water chemistry (Kulessa

et al., 2012). We have shown here that diurnal variations in

the liquid water content of in situ snowpacks can be derived

from electrical self-potential data and bulk discharge mea-

surements with a simple lysimeter. This derivation was sub-

ject to four key assumptions (Sect. 4) which we now examine

in turn to identify what, if any, constraints arise for future ap-

plications.

The Reynolds number (Re) is a common measure of the

mode of fluid flow through porous media, as discussed in a

relevant cryospheric context by Kulessa et al. (2003a):

Re =
ρsvL

η
, (9)

where v and L are respectively characteristic fluid flow ve-

locity (in m s−1) and characteristic length scale of flow (in

m), and ρs and η are respectively snow density (in kg m−3)

and dynamic viscosity (in Pa s). To a first approximation the

transition from laminar to turbulent flow nominally occurs

when Re≈ 10, although laminar flow can persist at much

higher values of Re (for comparison, in open channels tran-

sition occurs at Re≈ 2300). For our purposes v can be as-

sumed to correspond to the average linear velocity of flow,

v =QA−1n−1, where n is effective porosity (ratio of snow

and ice densities). In porous media such as snow, L corre-

sponds to the average pore diameter, and in the absence of
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direct evidence is assumed to be equal to grain size. Where

snow is denser than ∼ 490 kg m−3, such as that at our study

sites (average ∼ 564 kg m−3), grain size is expected to be

larger than pore diameter (Schneebeli and Sokratov, 2004).

This assumption is therefore likely an overestimation of pore

diameter. For the respective snow properties and their uncer-

tainties reported in Table 1, values of Re between < 1 and

51 are obtained, with a best estimate of Re≈ 1.1. These val-

ues pertain to times of highest measured meltwater discharge

when the Reynolds number is likely to be at its greatest. De-

spite the unrealistically large uncertainty bounds considered

in Table 1, and the overestimation of pore diameter (L) and

associated inflation of the Reynolds number (Eq. 9), we can

therefore conclude that meltwater flow in our snowpacks was

laminar. The absolute and relative inclinations of the snow

surface and base will vary to different degrees within differ-

ent field areas, thus generating differences in discharge and

potentially preferential flow. Indeed, it is an exciting attribute

of self-potential measurements that they will, in practice, aid

in delineating such differences in meltwater flow.

Persistent meltwater runoff at the snow surface is uncom-

mon, and meltwater flow through underlying soils or ice will

normally be negligible or small compared to flow through or

at the base of snowpacks. We have also shown that the esti-

mation of snow properties, such as liquid water content, from

self-potential data is insensitive to the area of snowpack con-

tributing meltwater flow to the measured signals. Uncertain-

ties in the area of origin of water contributing to measured

bulk discharges and thus measured self-potential data are not

therefore expected to be a major hindrance to future appli-

cations of the self-potential method to snow problems. We

have also shown that with the exception of the zeta potential,

sensitivity to uncertainties in the snow properties governing

the relationship between self-potential data and liquid water

contents is small (∼ 3–4 % in our feasibility study). Future

work must ascertain to what extent longer term monitoring

studies are affected by the preferential elution of ions and the

associated impacts on meltwater pH, electrical conductivity

and thus the zeta potential. Even if such effects were found to

be of concern, meltwater electrical conductivity and pH are

readily monitored in situ with automated probes and could

be measured alongside self-potential data at a calibration lo-

cation, and subsequently be assimilated in snow models. Be-

ing able to characterise liquid water content over significant

spatial areas is limited to the spatial distribution and density

of possible electrode placement. However, the robustness of

the estimation means that in practice, self-potential measure-

ments at several points within the area of interest can in the

future make reliable interpolations between measurements in

space and time.

The final consideration focused on the assumption that the

spatial pattern of self-potential magnitudes, measured during

the day across our survey areas, was due to temporal changes

in the liquid water content of the snowpack. This assumes

that any spatial pattern due to elevation changes between the

bottom and top of our survey areas is comparatively small

and indeed negligible. Kulessa et al. (2003a) showed that

elevation-driven changes in the self-potential fields measured

between upstream (9up) and downstream (9down) locations

(zup, zdown) can be approximated by

ψup−ψdown =−
εζ

ησw

Sw

(
zup− zdown

)
, (10)

here translated to our notation and adjusted for meltwater sat-

uration according to Eq. (2). Even for the maximum daily

values of saturation inferred from our measurements, the

elevation-driven spatial pattern has small magnitudes, esti-

mated to be∼−16.0 and−8.4 mV respectively for Jungfrau-

joch Glacier and Rhone Glaciers. These values are an order

of magnitude smaller than daily changes measured at the two

glaciers (Fig. 2) and are therefore considered to be insignif-

icant for the purpose of the present feasibility study. In sim-

ilar future applications the relevance of such spatial changes

should be assessed on a case by case basis, and would in fact

be readily incorporated into quantitative inferences of snow

properties from self-potential data where they are of concern.

Overall our findings imply that in principle, self-potential

data could be inverted for spatial or temporal variations in

any one desired parameter (i.e. discharge, liquid water con-

tent, permeability or water chemistry), if independent esti-

mates of the respective remaining parameters are available.

Self-potential data are therefore well suited for assimilation

in snow models along with meteorological and snowpack

observations. We have shown in previous cryospheric ap-

plications that self-potential monitoring is readily effected

with autonomous arrays of low-cost non-polarising elec-

trodes connected to a high-impedance data logger (Kulessa

et al., 2003a, b, 2012). In operational practice for instance,

2-D vertical arrays of electrodes and data loggers could be

installed along with meteorological stations and upward-

looking radar instrumentation, where the latter is used to

monitor snow structure and 1-D liquid water contents. As-

similation of self-potential data along with complementary

meteorological and radar data could then facilitate unique in-

sights into daily and longer term variations in 2-D vertical,

lateral and preferential meltwater flows, or in liquid water

contents. We conclude that the integration of self-potential

measurements into existing snow measurement and data as-

similation routines shows considerable promise in supporting

a reduction of uncertainty in quantifying snow–atmosphere

energy exchanges, or in predictive modelling used in opera-

tional snow forecasting.
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