Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-29-2016
https://doi.org/10.5194/tc-10-29-2016
Research article
 | 
15 Jan 2016
Research article |  | 15 Jan 2016

Virtual radar ice buoys – a method for measuring fine-scale sea ice drift

J. Karvonen

Related authors

Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022,https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Visual Interpretation of Synthetic Aperture Radar Sea Ice Imagery by Expert and Novice Analysts: An Eye Tracking Study
Alexandru Gegiuc, Juha Karvonen, Jouni Vainio, Eero Rinne, Roman Bednarik, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-8,https://doi.org/10.5194/tc-2022-8, 2022
Publication in TC not foreseen
Short summary
Estimation of Arctic land-fast ice cover based on dual-polarized Sentinel-1 SAR imagery
Juha Karvonen
The Cryosphere, 12, 2595–2607, https://doi.org/10.5194/tc-12-2595-2018,https://doi.org/10.5194/tc-12-2595-2018, 2018
Short summary
Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data
Alexandru Gegiuc, Markku Similä, Juha Karvonen, Mikko Lensu, Marko Mäkynen, and Jouni Vainio
The Cryosphere, 12, 343–364, https://doi.org/10.5194/tc-12-343-2018,https://doi.org/10.5194/tc-12-343-2018, 2018
Short summary
Comparing C- and L-band SAR images for sea ice motion estimation
J. Lehtiranta, S. Siiriä, and J. Karvonen
The Cryosphere, 9, 357–366, https://doi.org/10.5194/tc-9-357-2015,https://doi.org/10.5194/tc-9-357-2015, 2015
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Beauchemin, S. S. and Barron, J. L.: The Computation of Optical Flow, ACM Computing Survey v. 27, n. 3, 433–467, 1995.
Cohen, M. N.: Principles of Modern Radar Systems, Chapman and Hall, New York, USA, 465–501, 1987.
Druckenmiller, M. L., Eicken, H., Johnson, M. A., Pringle, D. J., and Williams, C. C.: Toward an integrated coastal sea-ice observatory: System components and a case study at Barrow, Alaska, Cold Reg. Sci. Technol., 56, 61–72, 2009.
Fily, M. and Rothrock, D. A.: Sea ice tracking by nested correlations, IEEE T. Geosci. Remote, 5, GE-25, 570–580, 1987.
Haarpaintner, J.: Arctic-wide operational sea ice drift from enhanced-resolution QuikScat/SeaWinds scatterometry and its validation, IEEE T. Geosci. Remote, 44, 102–107, 2006.
Download
Short summary
We present an algorithm for continuous ice drift estimation based on coastal and ship radar data. The ice dynamics are estimated based on automatically selected ice targets (virtual buoys, VBs) and an optical flow algorithm. VBs are added when necessary. We show some examples of the tracking and quantities derived from the VB motion.