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Abstract. Here we present an algorithm for continuous ice

drift estimation based on coastal and ship radar data. The

ice drift is estimated for automatically selected ice targets in

the images. These targets are here called virtual buoys (VBs)

and are tracked based on an optical flow method. To maintain

continuous ice drift tracking new VBs are added after a given

number of VBs have been lost; i.e. they can not be tracked

reliably any more. Here we also apply the algorithm to data

of three test cases to demonstrate its capabilities and proper-

ties. Two of these cases use coastal radar data and one ship

radar data. Ice drift velocity and direction information de-

rived from the VB motion are computed and compared to the

prevailing ice and weather conditions. Also a quantity mea-

suring the local divergence or convergence is computed for

some VBs to demonstrate the capability to estimate derived

kinematic sea ice parameters from VB location time series.

The results produced by the algorithm can be used as an in-

put for estimation of the dynamic properties of sea the ice

field, such as ice divergence or convergence, shear, vorticity,

and total deformation.

1 Introduction

Sea ice motion is an important parameter, because ice dy-

namics has a major effect on the nature of sea ice. Ice motion

can cause ice pressure, which in turn contributes to ice de-

formation, or diverging ice motion can cause opening of ice

(cracks, leads). The main goal of this study was to develop

and test an algorithm suitable for continuous operational ice

drift monitoring based on radar data and to demonstrate it for

a few test data sets from coastal and ship radars.

If necessary, radar platform (ship) motion can be compen-

sated based on the geoinformation (GPS (Global Positioning

System) position of each radar frame). However, large ship

motion is not desirable because the radar signal is rapidly at-

tenuated as a function of the range or, in the worst case, the

two radar images with a given time gap between them are

not overlapping any more. If ship motion is not compensated

then the ice drift with respect to the ship is measured, like in

the ship radar test case in this study.

Many publications on ice drift from Synthetic Aperture

Radar (SAR) imagery and other satellite-borne Earth Ob-

servation (EO) data have been published. The motion esti-

mation is based on detecting the same features in two ad-

jacent images (e.g. Fily and Rothrock, 1987; Kwok et al,

1990; Sun, 1994; Thomas et al., 2004; Haarpaintner, 2006;

Thomas et al., 2008; Karvonen, 2012). Motion vector estima-

tion for weather radar data has also been studied, e.g. in Peura

and Hohti (2004). Sea ice drift and object tracking from

coastal radars have been studied earlier: e.g. in Okhotsk Sea

in Tabata et al. (1980), by matching of prominent features

preserved from image to another; in the Chukchi Sea near

Barrow, Alaska, in MV et al. (2013), using Lucas–Kanade

optical flow algorithm (Lucas and Kanade, 1981) for fea-

tures detected by Harris corner/edge detection (Harris and

Stephens, 1988) algorithm; and in the Baltic Sea in Karvo-

nen (2013a), using a combination of phase correlation and

normalized cross-correlation. Coastal radar data for sea ice

analysis in the Canadian Arctic have been utilized in Shapiro

(1976), Shapiro and Metzner (1989), Mahoney et al. (2007),

Druckenmiller et al. (2009), and Mahoney et al. (2015).

One practical restriction for all the methods is that they

can only operate where distinguishable objects exist, and in

the featureless areas either no estimates are given or the es-
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timates are inter/extrapolated values. The motion detection

methods are computationally intensive but in principle easy

to parallelize due to the local nature of the computations.

In our earlier studies (Karvonen, 2013a; Karvonen et al.,

2013) we have used data with longer temporal differences

(10–30 min) than here and an algorithm based on cross-

correlation techniques. This approach was directly adapted

from techniques used for ice drift estimation from SAR im-

agery (Thomas et al., 2004, 2008; Karvonen, 2012). How-

ever, with a finer temporal resolution sub-pixel resolution

would be desirable, and it can not be achieved using cross-

correlation techniques without suitable interpolation of the

results. This interpolation needs to be nonlinear, thus also

requiring a larger support area than a simple linear interpola-

tion. Optical flow algorithm in turn inherently gives the esti-

mates with a sub-pixel resolution. For this reason we found

the optical flow approach better suitable for sea ice drift anal-

ysis from radar imagery of fine temporal resolution. Com-

pared to our earlier algorithms (Karvonen, 2013a; Karvonen

et al., 2013) we also get a better (sub-pixel) spatial and tem-

poral resolution of the ice drift estimates.

This optical flow algorithm also enables continuous opera-

tional ice drift monitoring. The algorithm automatically adds

virtual buoys (VBs) as their number decreases under a given

number and the monitoring can be continued for the ice sea-

son without any human intervention. Based on the automati-

cally performed ice drift analysis near-real-time information,

e.g. on local convergence or divergence (closing or opening

ship track), can be delivered for navigation in the area. Also

the radar image data can automatically be stored and trans-

mitted with a shorter time interval when the ice is moving or

deforming for further analysis. During periods of no ice drift

or insignificantly small ice drift radar, image data storage or

transmission is not necessary.

2 Radar image capturing and transmission

Marine radars typically operate at 10 GHz (wavelength λ≈

3 cm) and 3 GHz (λ≈ 10 cm), i.e. at X and S bands. The

radar resolution is defined by means of two resolutions: bear-

ing and range resolutions. Bearing (a.k.a. as azimuth or an-

gular) resolution is the ability of a radar system to separate

objects at the same range but at slightly different bearings.

The bearing resolution depends on radar beam width and the

range of the targets. Range resolution is the ability of a radar

system to distinguish between two or more targets on the

same bearing but at different ranges. Range resolution de-

pends on the radar pulse length, unless radar pulse compres-

sion techniques (Cohen, 1987) are used.

There are presently about 60 coastal radars along the

Finnish coast, administered by the Finnish Traffic Agency.

Also the Finnish navy and coastal guard have complemen-

tary coastal radar networks of their own. The radars are typ-

ically located 20–50 m above the sea level (the Tankar radar

used in two cases presented here about 30 m). The environ-

mental monitoring can be realized by instrumenting the radar

with an independent radar server, in our case the Image Soft

radar server designed and manufactured by the Finnish com-

pany Image Soft Ltd. We presently have radar servers in Mar-

janiemi and Tankar coastal radars in the Bay of Bothnia and

in the Uto coastal radar facing the northern Baltic Proper.

Further installations have been planned. The radar server is a

LINUX server equipped with a radar image capturing hard-

ware card. The radar servers capture the analog signals of

the radar and rasterize a PPI (plan position indicator) image

from the radar signal, the radar triggering pulse and the radar

antenna pulse for each radar revolution (or an image per a

user-defined time interval). PPI is the most common type of

radar display: the radar antenna is represented in the centre of

the display, so the distance from it can be presented as con-

centric circles. The sampling rate of the image digitization

on the image server is 20 MHz.

The digital–analog conversion produces 12 bit raw radar

data values. For the PPI imagery these data are quantized to

8 bits per pixel. According to our experience this quantiza-

tion is adequate for sea ice tracking. Many of the radar server

processing parameters can be adjusted for the user to be suit-

able for the radar and application; more details can be found

in the radar server technical manual (Image Soft, 2014)

All the rasterized images are stored on the server hard disk

while a subset of preprocessed images are sent to FMI. The

preprocessing performed on the radar servers is a temporal

median filtering of 15–20 s. The data are transmitted via a

stand-alone GSM (Global System for Mobile Communica-

tions) mobile link, for details see Fig. 1. Due to the limited

bandwidth of the GSM modems a preprocessed image is also

transmitted in every 2 min, which has proved to be a suit-

able time interval for continuous ice drift monitoring. Our

plans are to install the presented VB tracking software on the

radar servers, leading to a reduced amount of required data

transmission. In practice only VB motion, or VB motion data

with radar imagery in the case of significant ice motion, then

needs to be transmitted.

3 Data sets used in the study

We have used three data sets to test the new algorithm. Two of

the data sets were coastal radar data from the Tankar coastal

radar, located at 63.95◦ N, 22.84◦ E: the first data set period

was 25 February 2011 from 03:00 to 16:58 UTC (total time

period of about 14 h), and the second data set period was

8 February 2012 from 00:00 to 23:58 UTC (total time pe-

riod was about 1 day). The February 2011 Tankar coastal

radar data set will be referred as case A and the February

2012 Tankar coastal radar data set as case B. The data sets

were selected such that they include significant ice drift. The

temporal resolution, i.e time interval between two successive

radar images of the two coastal radar data sets, was 2 min.
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Figure 1. Coastal radar and data transmission. The temporal me-

dian filtering is performed on the radar server; a PPI radar image is

transmitted every 2 min by the GSM modem through the GSM base

transceiver station (BTS), GSM base station controller (BSC), and

mobile switching centre (MSC) and further through the Internet and

to the FMI server performing the radar motion analysis.

The third data set was a longer period data set and collected

on-board RV Lance during the period from 21 January 2015,

11:30 UTC, to 18 February 2015, 10:20 UTC. The time dif-

ference between successive radar images of the RV Lance

data set was 10 min. For demonstration purposes we selected

a 1-day period (8 February 2015 from 00:00 to 24:00 UTC)

of the RV Lance data set. This data set will be referred as case

C here. During this time period set, significant and heteroge-

neous ice motion with respect to the ship also occurred within

the radar coverage. During this 1-day period the location of

RV Lance was north of Svalbard, approximately 82.5◦ N,

18◦ E. The total range of the Tankar coastal radar data sets

was 20 km and the image size was 1200× 1200 pixels; i.e.

the nominal resolution was 33.3 m. For the RV Lance radar

the image size in pixels was the same as for the Tankar data,

but the range was only 7.5 km, resulting to a nominal reso-

lution of 12.5 m. The radar image area of the Tankar radar

was shifted 10 km to the west and the images were rotated

49.93◦ to the counterclockwise direction on the radar server

with respect to the radar location. This kind of operations can

be performed on the radar server by giving the displacement

and rotation parameters. The translation and rotation were

performed to minimize the land area in the imagery to get a

larger cover of the sea area.

To reduce radar artifacts (e.g. due to weather phenomena,

radar noise or clutter, electromagnetic interference) tempo-

ral median filtering in the beginning of each minute (11 im-

ages, corresponding to about same amount of time in sec-

onds, assuming that the radar rotation frequency is about

1 Hz) was performed. During this time period the ice mo-

tion is neglectable and only the noise and possible artifacts

are reduced by the filtering. The images were also processed

by homomorphic filtering (HMF) to reduce the signal atten-

uation as a function of the range (Lensu et al., 2014). This

processing mainly makes the visual analysis of the data eas-

ier. According to some performed tests it does not have sig-

nificant effect on the tracking of objects.

We also applied a rough land mask to the Tankar im-

agery. Our land mask was derived from the GSHHG

(Global Self-Consistent Hierarchical High-resolution Geog-

raphy database) from the NOAA (National Oceanic and At-

mospheric Administration) coastline data (Wessel and Smith,

1996).

For the RV Lance data we were unable to perform the tem-

poral median filtering because we only had data with 10 min

temporal sampling at our disposal, i.e. only one unfiltered

image every 10 min.

4 Weather and ice conditions at the test sites

The air temperature on 25 February 2011 (corresponding to

case A) around the Tankar lighthouse and radar station was

from about −15 ◦C in the morning to about −3 ◦C in the af-

ternoon. The previous day was colder with a daily maximum

temperature of about −15 ◦C. The wind direction was 150–

180◦, and wind speed varied in the range 6–8 ms−1. In the

eastern parts of the area there was landfast ice; west of the

fast ice there was a zone of very open ice (concentration 10–

30 %), and west of this zone there were very close drift ice

(concentration 90–100 %). The ice thickness in the area was

20–55 cm. The ice information were extracted from the FMI

ice charts.

On 8 February 2012 (case B) the air temperature around

the Tankar lighthouse and radar station was from −11◦ in

the morning to −20 ◦C in the evening; also, the previous day

the temperatures were relatively cold, below −10 ◦C. The

wind direction was 90–180◦, and wind speed in the range

2–6 ms−1. According to the FMI ice charts there was a fast

ice zone in the eastern parts of the area, a zone of new ice to

north and east of the fast ice, and very close drift ice (ice con-

centration 90–100 %) further in the west. The ice thickness in

the area was 5–30 cm.

On 8 February 2015 (case C) the air temperatures around

RV Lance were cold, about −30 ◦C; the wind direction

was 300–330◦ and wind speed around 8 ms−1. The ship

was drifting with a speed of approximately 0.2 ms−1, first

to the south and later to the southeast. According to the

met.norway ice charts the ice in the area was very close drift

ice (ice concentration 90–100 %), and according to the op-

erational Nansen Environmental and Remote Sensing Center

(NERSC) Topaz ice model (Sakov et al., 2012) the ice thick-

ness was 100–120 cm in the area. As the weather was cold,

the opening leads were also frozen relatively fast and the ice

thickness in frozen leads was typically around 20 cm.

5 Virtual buoys and tracking algorithm

In the first phase a filtering to reduce the signal attenuation

as a function of the range is performed, which is described
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in more detail in Sect. 5.1. After this we used an edge and

corner detection to locate the VBs in the first radar image of

a radar image sequence and also when adding new VBs af-

ter the number of VBs has reduced to a predefined level (an

adjustable parameter). The tracking algorithm is also based

on the optical flow (e.g. Horn and Schunck (1981) and Beau-

chemin and Barron (1995)) between successive image pairs.

The schematic flow diagram of our algorithm has been pre-

sented in the diagram of Fig. 2. In the first phase the VBs

are initialized based on features (edges and corners) detected

by using absolute local binary patterns (ALBPs; described in

more detail in Sect. 5.2), and then one iteration of motion

tracking between the first two images of the image sequence

is performed to prune the VBs due to noise amplification by

the image filtering: all the images fed into the algorithm are

first filtered by the HMF to reduce the range dependence of

the radar signal. After this initialization a list of the auto-

matically selected VBs (including the locations and cross-

correlations between the matched windows) are fed to the

continuous VB tracking algorithm. At each iteration a new

filtered radar image is put into the tracking system and the

optical flow tracking between the previous and the novel im-

age is performed. After each tracking iteration the number of

resulting VBs is compared to a predefined threshold (TN ),

and if the number of the remaining VBs is less than TN ,

new VBs are added starting from near range until the orig-

inal number of VBs has been reached. The new VB location

are defined based on ALBP features with the limitation that

they are not allowed to be added closer than a given radius

Rx (we have applied Rx = 15 pixels here, but this parameter

can be defined by the user) from the existing VBs. After the

VB adding step the tracking is continued with the updated

list of VBs. If still more VBs exist than the defined threshold

TN , then the VB tracking is continued without updating the

list of VBs.

5.1 Radar image preprocessing by HMF

The temporal median filtering is applied already on the radar

server before transmitting the data. After receiving the data

HMF is applied to reduce the attenuation of the signal as a

function of the distance from the radar.

HMF has its background in optical image processing (Pitas

and Venetsanopoulos, 1990). HMF intensity I (r,c) at image

location (r,c) for an optical image is presented as a product

of the illumination LI and reflectance RI , where RI cab be

considered as a quantity describing interesting objects in the

scene and LI results from the lighting conditions, i.e.

I (r,c)= LI (r,c)RI (r,c). (1)

The applicability of the method for coastal radar imagery is

readily conceived, as the images make the impression that the

radar tower “illuminates” the ice field where the sea ice fea-

tures reflect this “light”. To proceed, a logarithm transform

is first applied to make the components of Eq. (1) additive

Figure 2. Flow diagram of the continuous VB tracking.

and linearly separable. The variations of illumination are then

considered as noise that can be reduced by applying a high-

pass filter. We assume that the reflectance, which is of inter-

est, is represented more by the high-frequency components

while the low-frequency components relate to the illumina-

tion. In other words, the lighting condition is assumed to vary

slowly across the image (the physical attenuation of the radar

power) and reflectance is changing faster (due to deformed

ice areas such as ridges). In practice the frequency filtering

has here been implemented by applying the 2-D fast Fourier

transform (FFT) to the image, then performing the high-pass

filtering in the Fourier domain, and finally performing the in-

verse FFT. Because FFT requires the size of the input to be

a power of 2, we extend our image to the nearest power of 2

larger than the image size by mirroring with respect to the im-

age boundaries (in our case a 1200× 1200 pixel image is ex-

tended to 2048× 2048 pixel image). In the frequency (FFT)

domain the low-pass coefficients are attenuated by multiply-

ing by a factor f < 1.0; in our case we have used f = 0.0, i.e.

totally zeroing the low-frequency components. A schematic

presentation of the HMF principle is shown in Fig. 3. An ex-

ample of HMF for a radar image of the case. A time series is

shown in Fig. 4.

5.2 Local binary patterns and VB selection

We have used LBPs (Ojala et al., 1996) here for the edge and

corner detection. LBSs are computed locally over the image

area around each image pixel. LBSs can be used as a tex-
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Figure 3. The principle of homomorphic filtering. A logarithmic

transform is applied to make the illumination and reflection terms

additive, a high-pass filter is then applied, and an exponential trans-

form is applied to invert the log transform.

Figure 4. One temporal median filtered radar image (25 February

2011, left) and the same image after the homomorphic filtering. The

land areas according to our rough land mask are masked off (white

area in the figures). The associated scale is in kilometres.

ture measure or for detecting certain imagery features such

as edges and corners. We used a step of5/4 in direction cor-

responding to 8 bit binary patterns; the radius RLBP (distance

from the centre pixel, see Fig. 5) used here was 2. A (8 bit)

local binary pattern is defined as

LBP=

7∑
k=0

s1(gk − gc)2
k, (2)

where gc is the grey tone of the centre pixel and the values of

gk are the grey tones in the 8 pixels within the given radius

RLBP around the centre pixel (see Fig. 5) and s1(x) defined

as

s1(x)=

{
1, if x ≥ 0

0, if x < 0.
(3)

Here x is a generic argument for s1; for LBP, x = gk−gc. We

have used a variant which we here call the ALBP:

ALBP=

7∑
k=0

s2(gk − gc)2
k, (4)

and s2(x) defined as

s2(x)=

{
1, if |x| ≥ T

0, if |x|< T.
(5)

T is a threshold value and we have used value T = 10 in

this study. Rotational invariance can be achieved by using

the minimum among all the (eight) cyclic shifts of the ALBP.

Figure 5. Geometry of an LBP with an angular step of 5/4. The

circle has a radius of R, which is one LBP parameter.

This is denoted here by ALBPr. The value 15 of ALBPr cor-

responds to an edge point, value 31 corresponds to a corner

point, and value 63 corresponds to a sharp corner point. The

ALBP 15 corresponds to the pattern of four adjacent points

Gi (i = 0. . .7) with the value of 1 (see Fig. 5), 31 to a pattern

of five adjacent points Gi with the value of 1, value 63 to a

pattern of six adjacent points with a value of 1, and all the

other values Gi of 0.

We also first locate all the corner and sharp corner points

over the radar image and, based on the local densities of

corner and sharp corner points, search for suitable objects

for VBs. The idea is to select such areas of the radar im-

age where there are many corner and sharp corner points,

i.e. local maxima of their densities. The corners are searched

to locate locally unique features containing nonlinear edges,

because linear edges often are similar along the edge and can

lead to similarization errors in the tracking process.

We select the points which locally (within a given radius

Rb) maximize the complexity function Fc:

Fc(r,c)=Nc(r,c,Rs)Nsc(r,c,Rs), (6)

where Nc(r,c,Rs) is the number of corner points within

a search radius Rs from the location described by the column

and row coordinates (r,c), and Nsc(r,c,Rs) is the number of

sharp corner points within the same area. To avoid assign-

ing VBs too close to each other, we only perform the search

Rs or more outside the already assigned VB locations. We

have used values Rb = 30 and Rs = 15 pixels here, but these

parameters can be defined by the user.

VBs are added always when the number of VBs becomes

less than a given threshold TN . TN can be defined as an ab-

solute value or relative to the number of original VBs. In the

experiments presented here we have used relative TN values

of 75–90 % of the number of the original number of the VBs.
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Because we apply the HMF prior to the VB selection, we

also get relatively many VBs in the far range, because the

filtering also amplifies the noise in the far range. For this

reason, to properly initialize the VBs we perform one VB

tracking iteration between the first and second images of the

sequence to remove the VBs due to this noise amplification.

This first iteration removes the VBs generated by random

fluctuation (amplified radar noise).

In the areas of no distinguishable ice features (low signal-

to-noise ratio) in the imagery the tracking can not be reliably

performed. For example in the far radar range this is typically

the case. Typically there are enough ice features available and

suitable for tracking ice drift in the drift ice field; within drift

ice deformation continuously occurs, leading to ice features

visible in radar (e.g. ice ridges). The algorithm only adds and

tracks VBs in the areas where such traceable targets exist.

5.3 Optical flow and algorithm implementation

Optical flow (Horn and Schunck, 1981; Beauchemin and

Barron, 1995) is a method used for estimating motion in im-

age sequences such as in digital video. In optical flow we

assume an intensity at a location (x,y) in a digital image at

time to be moving such that

I (x,y, t)= I (x+1x,y+1y,t +1t). (7)

Using the Taylor expansion and assuming small motion,

I (x+1x,y+1y,t +1t)= I (x,y, t)+
δI

δx
1x

+
δI

δy
1y+

δI

δt
1t +HOT

⇒
δI

δx
1x+

δI

δy
1y+

δI

δt
1t = 0, (8)

where HOT stands for higher-than-first-order terms. Divid-

ing by 1t we get the optical flow equation:

Ixvx + Iyvy =−It , (9)

where Ix , Iy , and It indicate the partial derivatives of the

image signal with respect to x, y, and t . The changes of I

at (x,y) in x and y directions and change of I in time can

be estimated from an image pair. To perform the estimation

additional conditions are needed. One practical approach is

the Lucas–Kanade method (Lucas and Kanade, 1981) where

it is assumed that optical flow equation holds for a block of

N pixels pk (k = 1, . . .,N ):

Ix(p1)vx + Iy(p1)vy =−It (p1)

. . . (10)

Ix(pN )vx + Iy(pN )vy =−It (pN ).

This corresponds to a (overdetermined) linear system Av =

b, where v = [vx vy]
T and

A=

 Ix(p1) Iy(p1)

. . .

Ix(pN ) Iy(pN )

 (11)

and

b =

−It (p1)

. . .

−It (pN )

 . (12)

The block of N pixels consists of pixels within a round-

shaped window around a centre pixel (VB centre). This lin-

ear overdetermined system of equations can be solved (least

squares solution) (Penrose, 1955) as

v = (ATA)−1AT b =Mb. (13)

M = (ATA)−1AT is known as the Moore–Penrose pseu-

doinverse.

We have used the following discrete estimates for Ix , Iy ,

and It (Horn and Schunck, 1981):

Ix =(I1(r + 1,c)− I1(r,c)+ I1(r + 1,c+ 1)

− I1(r,c+ 1)+ I2(r + 1,c)− I2(r,c)

+ I2(r + 1,c+ 1)− I2(r,c+ 1))/4

Iy =(I1(r,c+ 1)− I1(r,c)+ I1(r + 1,c+ 1)

− I1(r + 1,c)+ I2(r,c+ 1)− I2(r,c)

+ I2(r + 1,c+ 1)− I2(r + 1,c))/4

It =(I2(r,c)− I1(r,c)+ I2(r + 1,c)− I1(r + 1,c)

+ I2(r,c+ 1)− I1(r,c+ 1)+ I2(r + 1,c+ 1)

− I1(r + 1,c+ 1))/4, (14)

where I1 and I2 are the first and second (in this temporal or-

der) image of an image pair, and (r,c) refers to the row and

column coordinates which are used here instead of x and y.

The image pixel values with fractional coordinates are com-

puted using bilinear interpolation. For numerical stability it

is essential that the estimates for Ix , Iy , and It are computed

at the same spatiotemporal location.

The optical flow method is best suitable for short mo-

tion corresponding to short time differences, e.g. for our

coastal radar data with a relatively short time difference (in

our case 2 min). In practice some image smoothing at sharp

edges is recommendable before the optical flow computa-

tion, because optical flow assumes continuity of the signal.

For this reason we perform a spatial Gaussian smoothing of

the images before the optical flow estimation. The Gaussian

smoothing is combined with the original image data by a lin-

ear combination to get the smoothed pixel value I ′(r,c) from

the original pixel value I (r,c) and the smoothed pixel value

G(r,c) (G refers to the image convolved with a predefined

Gaussian kernel):

I ′(r,c)= fG(r,c)+ (1− f )I (r,c). (15)

We used a Gaussian kernel with standard deviation σ = 15.0

(pixels) in the Gaussian smoothing, i.e. convolving the orig-

inal signal with the Gaussian kernel, and for the factor f =

0.8, i.e. the original image pixel value has a weight of 0.2
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Figure 6. The initial VBs of the February 2011 test data set (a), and

the February 2012 data set (b) drawn over the first radar images of

the sequences. The coordinates are in kilometres, and the radar is

located at (row, column)= (20,30). The land area according to our

rough land mask is indicated in green. The associated scale is in

kilometres.

and the smoothed pixel value a weight of 0.8 in the linear

combination used.

In computation of the optical flow we used a spherical win-

dow with a radius of 11 pixels (resulting to N = 377 pixels

involved) for the coastal radar data and a a spherical window

with radius of 21 pixels (N = 1373) for the ship radar (with

longer time difference between the successive images) in the

optical flow estimation.

If the cross-correlation between two matched windows is

less than a given threshold Tcc the object is not tracked any

more, i.e. the VB is lost. We have used Tcc = 0.9 in our ex-

periments presented here. We also studied the use of the co-

efficient of determination of the linear fits as a measure of

the matching quality, but it seems to have insignificant corre-

lation e.g. with respect to the cross-correlation, which seems

to be a more useful measure. The first tracking iteration (be-

tween the first and second images) is used to prune the unre-

liable VBs produced by noise amplification due to the HMF.

The same cross-correlation thresholding is applied for this

purpose.

6 Experimental results

6.1 Coastal radar image sequences

The initial radar images (first images in the image sequences)

of the two coastal radar image sequences of cases A and B,

with the locations of the initial VBs indicated, used in our

experiments are shown in Fig. 6. The location of the radar

indicated by the green dot and the initial VBs are indicated

by red dots and the location of the radar by green dots.

The first and last images of case A and case B are shown

in Figs. 7 and 8 respectively. From these images we can see

the change of the ice field during the whole study period. In

case A a large ice field is torn off and drifting away from

the land and landfast ice zone. In case B a smaller part of

Figure 7. The first and last image of the February 2011 test data set.

The coordinates are in kilometres, and the radar is located at (row,

column)= (20,30). The land area according to our rough land mask

is indicated in green. The associated scale is in kilometres.

Figure 8. The first and last image of the February 2012 test data set.

The coordinates are in kilometres, and the radar is located at (row,

column)= (20,30). The land area according to our rough land mask

is indicated in green. The associated scale is in kilometres.

the ice is also torn off and floating away from the coast. The

trajectories resulting from the Lucas–Kanade optical flow al-

gorithm for the two test cases are shown in Fig. 9a and b. We

can see that for case A the direction of the motion was rather

uniform over the whole drift ice area, but for case B the di-

rection of the motion was less uniform. However, this kind of

trajectory plots do not show the ice drift velocity evaluation

as a function of time.

The VB trajectories computed by the algorithm corre-

spond to the visual interpretation during the test periods. The

visual inspection was performed using animations of the im-

age sequences with the VBs indicated by coloured circles

over the radar imagery. The information derived from VBs

gives us possibilities to estimate different parameters related

to the ice drift. We have computed some features for three

selected VBs on both the images. Three VBs were selected

to initially be close each other such that they form a triangle.

Based on the triangles formed by the VB triplets we could

compute the evolution of the area of the triangles as a func-

tion of time, indicating local divergence or convergence. The

trajectories of the selected VB triplets are indicated in red in

Fig. 9.
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Figure 9. Trajectories of the VBs which survived the whole Febru-

ary 2011 and February 2012 test periods. The three VBs whose

properties are studied in more detail in both the cases are indicated

in red. The starting point of a trajectory is indicated by an open

circle and the end point by a closed circle. The coordinates are in

kilometres, and the radar is located at (row, column)= (20,30). The

land area according to our rough land mask is indicated in green.

The associated scale is in kilometres.

For case A a large part of the ice was torn off the fast ice

and drifting to north/northwest (Figs. 7 and 9a). For this case

we applied a threshold TN = 75 % of the original number of

VBs. The number of VBs as a function of time for this case is

shown in Fig. 10a. We adjusted TN this high just to demon-

strate the adding of VBs, in practice a lower value could be

used. For case B some smaller ice floes were torn off and

drifting to the northwest and west (Figs. 8 and 9b). For this

case we used TN = 90 % of the original number of VBs. The

number of VBs as a function of time is shown in Fig. 10b.

Because the total time was longer for this case the VBs were

added twice during the whole time period of 24 h.

It is also straightforward to compute the velocity and direc-

tion (here given as the compass direction with 0◦ to the north,

90◦ to east, and so on) by just dividing the displacement con-

verted to metres by the time step of 2 min for each successive

image pair. The velocities and direction for the selected three

VBs of case A are shown in Fig. 11. It can be seen that the

three VBs are moving rather coherently. The velocity is first

very slow and the direction rather ambiguous. Then the ve-

locity is accelerated rather rapidly (the average acceleration

a can be estimated by dividing the velocity differences be-

tween the two adjacent velocities by the length of the time

step: a ≈ 3.0× 10−5 m s−2). It can also be seen that as the

direction changes for a short time, the velocity is reduced

(around time 600 min). In Fig. 12 the velocity and direction

are shown for case B. Also in this case the ice is quite stable

for a while in the beginning of the time period and then the

velocity accelerates (in the beginning, a ≈ 1.5×10−5 m s−2;

later the average acceleration in general is lower but exhibits

temporal variation) to a top value of about 0.3 ms−1 achieved

near the end of the period. For case A the top velocity was

a little lower and achieved about in the middle of the time

period. For case B the velocities of the three studied VBs

were less uniform than for case B. This also results to the

larger divergence for this case compared to 25 February 2011

case. The ratio of the area of a triangle formed by a selected

triplet of points to the area of the triangle formed by the same

triplet in the beginning of the study time period are shown in

Fig. 13 for the cases A and B. These figures indicate the local

ice convergence (decreasing value) or divergence (increasing

value).

For case A we can see divergence after the motion starts

(after around 100 min) to around 300 min, and then about

100 min of convergence and then divergence again. The di-

vergence is increased around 600 min, and finally after about

700 min the VBs move uniformly for the rest of the time. The

VB velocity accelerates from 0 to about 0.2 m s−1 during the

period from approximately 100 to 300 min; also during this

period the relative area increases, indicating divergence. Dur-

ing the period from approximately 300 to 400 min the VB

velocity remains about similar, but there is some variability

in the velocities and directions of the single VBs leading to

convergence during this period. After this, during the time

period from about 400 to 600 min, the VBs move quite uni-

formly while their velocity first increases and then decreases.

After 600 min the velocity of all the VBs accelerates from

about 0.05 m s−1 to about 0.2 m s−1 and during this period

we also see differences in the velocity of the different VBs

and due to these differences also the relative area increases

(indicating divergence).

For case B, there is a period of divergence from about

200 min to about 800 min, and after that the VBs move quite

uniformly to the end of the period. During the diverging pe-

riod, there seem to be one VB (the northernmost one) moving

faster than the two other VBs, mostly explaining the diver-

gence. The relative area changes were from 1.0 to 1.2 for

case A and from 1.0 to 1.5 for case B. In case B the ice con-

centration in later parts of the period was quite low, but in

case A the VBs were part of a larger drifting ice field.

The ice drift estimated by VBs was also compared to the

simple free drift model (Lepparanta, 2009). According to the

model the ice drift velocity is the (surface) wind speed mul-

tiplied by a factor Na , also known as the Nansen number.

A typical value of Na for the Baltic Sea is 0.025 (Leppa-

ranta and Myrberg, 2009) and 0.017 for the Arctic (Leppa-

ranta, 2009). The free drift model ice drift direction in the

Northern Hemisphere is the wind direction rotated clock-

wise by 20–40◦ (Lepparanta, 2009). For case A, the wind

speed was in the range 6–7 m s−1 for the first 4.5 h of the

study period and then increased to 8–9 m s−1 for the 4.5 h.

The last 5 h of the period the wind was mainly in the range

7–8 m s−1. According to the free drift model the ice drift ve-

locities during these three periods would be about 0.16, 0.21,

and 0.19 m s−1. These values correspond to the VB velocities

in Fig. 11a rather well. In the beginning of the period there

was no significant drift until the ice was torn and started to

drift. The wind direction was in the range 150–180◦ and the

ice was moving approximately to the north. This is also in ac-
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Figure 10. Number of VBs at each time step for the 2011 case (a) and for the 2012 case (b). The threshold to add new VBs was 75 and 90 %

of the original number of VBs respectively.

Figure 11. Velocity (a) and direction (b) for the 2011 case selected three VBs. The direction is in degrees.

cordance with the free drift model ice direction, taking into

account that the Finnish coastline in the east was restricting

the eastward drift component.

For case B the wind speed was approximately in the range

4–6 m s−1 during the first 8 h of the study period. During the

second 8 h period the wind speed was in the range 2–4 m s−1,

and during the last 8 h period it increased to approximately to

4–5 m s−1. The wind direction during the period varied from

about 180◦ to about 90◦ and then back to about 150◦. Ac-

cording to the free drift model the ice drift velocities in the

three 8 h periods would have been approximately 0.12, 0.08,

and 0.11 m s−1. There was, just like in case A, a static period

in the beginning of the study period, but after the ice motion

started the VB velocities were somewhat larger than the val-

ues based on the free drift model. One reason for this may

be that the ice was relatively thin and drift ice concentration

was low as the ice proceeded faster further from the coast.

The ice drift direction of Fig. 12b corresponded to the free

drift model quite well.

6.2 Ship radar image sequence

The RV Lance ship radar data were collected during the pe-

riod from 21 January to 18 February, and the temporal dif-

ference between each image pair was 10 min, which is quite

long for an optical flow algorithm. The ship was drifting in

ice and no ship motion correction based on ship GPS has

been performed; i.e. the detected ice drift is the drift with

respect to the ship. The ship motion could be compensated

based on the ship GPS, but we did not have this information

available when this study was performed.

We computed the tracking for the whole period but here

we only show the results for a 1-day period with some in-

teresting motion. During many of the days the motion with

respect to the ship was not significant. Because the ship radar

had a shorter range and higher resolution there were sea ice

details visible over the whole image.

For demonstration we selected the 8 February 2015 data

for the whole day (case C) with significant ice motion with

respect to the ship in some areas within the ship radar range.

Also in this case we selected three adjacent VBs, indi-

cated in red in the trajectory image of Fig. 15, for which

we computed their velocities, directions, and the divergence

based on the area of the triangle formed by these three VBs.

The first image of the 1-day time period (8 February 2015,

00:00 UTC) and the last image of the period (9 February

2015, 00:00 UTC) are shown in Fig. 14. It can be seen that

two larger leads are opening, one in the northeastern part and

another in the southern part of the images. This is also indi-

cated by the VB trajectories shown in Fig. 15. The drift ve-

locity, direction, and divergence for the selected VB triplet
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Figure 12. Velocity (a) and direction (b) for the 2012 case selected three VBs. The direction is in degrees.

Figure 13. Ratio of the area of the triangle formed by the selected three VBs with respect to the area in the beginning of the period for the

2011 case (a) and for the 2012 case (b).

Figure 14. The first and last radar images of the RV Lance 1-day

test period. The ship radar is located in the middle of the image. The

associated scale is in kilometres.

are shown in Figs. 16 and 17. In this case the direction

changes quite suddenly around the 300–400 min mark. How-

ever, there is no significant reduction in the computed drift

velocity. This may be due to the relatively sparse time step

of 10 min; with 2 min time steps the observed speed change

might have been larger. It can also be seen that some con-

vergence occurs for the ice area described by the selected

triplet of VBs. The area is decreased to about 80 % of the

original area. This is because the VBs belong to the ice field

east of the opening lead and the ice is converging in this

Figure 15. Trajectories of the VBs which survived the RV Lance

1-day February 2015 test periods. The three VBs whose properties

are studied in more detail in both cases are indicated in red. The

starting point of a trajectory is indicated by an open circle and the

end point by a closed circle. The associated scale is in kilometres.

area. The largest estimated average acceleration for case C

was a ≈ 7.5× 10−6 m s−2 in the time interval from 600 to

800 min.
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Figure 16. Velocity (a) and direction (b) for the RV Lance 2015 case selected three VBs. The direction is in degrees.

Figure 17. Ratio of the area of the triangle formed by the selected

three VBs with respect to the area in the beginning of the period for

the 2015 RV Lance case.

For case C, the wind direction also varied in the range

300–330◦, and wind speed was around 8 m s−1. According

to the free drift model this would result in drift direction of

about 90–120◦ and speed around 0.015 m s−1. These values

approximately correspond to the ship drift speed and direc-

tion. As the VB drift was estimated with respect to the ship

we were not able to apply the free drift model to the estimated

VB velocity and direction of Fig. 16. We can see that in the

beginning as the ice drift with respect to the ship is slow the

ice drift direction is approximately the same as the ship drift

direction (ice is moving slightly faster than the ship to ap-

proximately same direction), but after the non-homogeneous

dynamic ice drift events begin there are some relatively rapid

changes in the VB velocities and directions. These relative

changes were due to the local surface current and wind de-

viations. The compression in the triangle described by the

triplet of VBs started around 1200 min and continued to the

end of the period. During this period the velocity also de-

creased proportionally to the decrease of the triangle area.

This is also an expected result as the ice velocity tends to

reduce in compressing ice.

6.3 Evaluation of the estimation error

We performed a study in which we compared some visu-

ally selected points within some target windows (VB area)

of a moving VB and manually defined the location after

each 200 min steps (100 2 min time steps) in the four Tankar

coastal radar VB sets. The selected points were not neces-

sarily in the middle of the window (which corresponds the

VB location in the algorithm), but such points which could

be visually located in the time series of radar images. If we

assume that the VB area remains unchanged (acts as a rigid

object) then the difference between the VB centre and the

studied point should remain constant. We computed the stan-

dard deviation of the difference for our selected points and

the VB centres for the row and column coordinates and got

values σr = 1.41 and σc = 1.24. The manually defined lo-

cations were always integers; i.e. the locations were defined

visually from the image by pointing the pixel by a mouse and

recording the pixel coordinates with a precision of one pixel.

There are three sources of error in the manual estimation: hu-

man estimation error, rounding error to an integer pixel (on

average 0.25 pixels in both directions), and changes due to

possible internal transformations within the VB area. Based

on this analysis we can only estimate the error in VB posi-

tion to roughly be less than or equal to 1 pixel (33 m) in both

coordinate directions, because it is difficult to estimate the

exact contributions of the error sources present.

In Fig. 18 we show the locations of the VBs (red) and lo-

cations of the manually tracked points within the VB area for

one case A time series. Also the corresponding VB and some

ice area around it at the time instants 0, 200, 400, 600, and

800 min are shown in the figure. A thorough evaluation using

this method would in practice be labour intensive. An estima-

tion error of roughly 1 pixel in both coordinate directions in

2 min seems to overestimate the actual error; in addition, we

also studied other methods of estimating the error.

Better accuracy for the estimation error can be reached

by estimating the differences of both the coordinates when

the ice is not moving based on visual interpretation. Such a

situation is e.g. at the beginning of case B. We selected a

160 min time period from the beginning of case B time se-
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Figure 18. An example of manual VB pixel location estimation and VB location defined by the algorithm with a time step of 200 min (case

A). The locations are shown in (a): the red dots indicate the VB centre location, the blue dots the selected and tracked feature location, and

the corresponding pairs have been marked with the green rectangles. The VB areas (red circles) in the radar imagery with some background

included at the given time instants are shown in time order from left to right in (b)–(f).

ries and computed the means and standard deviations of the

successive (with a time difference of 2 min) location differ-

ences of r and c coordinates (row and column) for three VBs

of this time series. We got for the values µ1r =−0.020 and

µ1c =−0.035 for the means and σ1r = 0.126, and σ1c =

0.120 Tankar radar pixels (33 m) for the standard deviations.

We also performed a similar study with the RV Lance case by

selecting a VB which was visually static during the whole 1-

day study period and computed the values µ1r =−0.00076

and µ1c =−0.000393 for the means and σ1r = 0.145, and

σ1c = 0.142 RV Lance radar pixels (12.5 m). The standard

deviations can be considered as estimates of the location esti-

mation error in the row and column directions. Possibly there

still were some minor ice motion (not easily visible by eye)

in the Tankar radar case as the values of µ1r and µ1c were

significantly higher than for the RV Lance data.

For comparison, the error of GPS is 15m or less for 95 %

of the time (Hofmann-Wellenhof et al., 2008). Some addi-

tional error in the GPS location is caused by the water level

changes. This gives an idea of the location error of buoys

equipped with GPS positioning.

The accuracy of the derived quantities such as velocity,

direction, and area of a triangle formed by three VBs can

be estimated based on the multivariate Taylor expansion; if

we assume the errors are relatively small, we can also as-

sume the higher-order terms to be neglectable and estimate

the error by the first-order terms. If the derived quantity Z

is a function of the original quantities Xi , i = 1, . . .,n, i.e.

Z = F(X1, . . .,Xn), then the error 1U at (X1, . . .,Xn) can

be estimated as, see e.g. (Steward, 1996),

1U =

n∑
i=1

∂F

∂Xi
1Xi . (16)

We can compute the error estimates for the velocity

v and direction θ from their formulas v = s/t , and θ =

arctan(dr/dc), where s is the drift of the VB between the 2 or

10 min time period, t is the time (2 or 10 min), dr is the row

direction drift, and dc is the column direction drift within a

given time period. Also the corresponding error estimate for

the triangle area A can be estimated based on the equation

used for the triangle area A:

A= |(r1(c2− c3)+ r2(c3− c1)+ r3(c1− c2)|/2, (17)

where (r1,c1), (r2,c2), and (r3,c3) are the corner row and

column coordinates of the triangle, i.e. coordinates of the

three VBs forming the triangle. Making some simplify-

ing assumptions, e.g. that the error in time measurement
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is neglectable, we get the estimates 1v ≈ 0.05 m s−1 for

the Tankar cases (A and B) and 1v ≈ 0.004 m s−1 for the

RV Lance case (C). The derived error estimation formula for

the ice drift direction has the ratios of dr2
+dc2 in the denom-

inator, and for this reason it will give unreliable estimates for

small values of drift in the case both dr and dc are small.

According to our experiments the estimates of the direction

are not very reliable (include a lot of variation) for veloci-

ties lower than approximately 0.1 m s−1. This can be seen in

Figs. 11b and 12b in the beginning of the two periods as the

ice motion is small, or does not exist at all, as large varia-

tions of the direction estimates. According to our evaluation

the relative error in the computed triangle (formed by VB

triplets) size is about 0.5–0.6 % of the triangle area for case

A, 0.8–1.1 % for case B, and 1.3–1.5 % for case C.

7 Discussion and conclusions

An algorithm for ice tracking was developed to track virtual

ice buoys. The algorithm enables continuous ice drift track-

ing by adding VBs after a certain absolute or relative amount

of VBs has been lost; this number or ratio can be defined by

the algorithm user. The location of the VBs are initialized

automatically based on the local information content of the

image favouring locations with well-distinguishable features.

The VBs can also be initialized manually if some specific

case studies are made. This method is best suitable for rel-

atively short temporal steps and giving sub-pixel resolution,

unlike our earlier algorithm based on cross-correlation (Kar-

vonen, 2013a). From the VB tracks many kinds of derived

quantities, such as divergence, shear, vorticity, and total de-

formation, can be computed and information on the nature of

the ice dynamics extracted. For example it is possible to dis-

tinguish between deformed ice and level ice or open water at

least in the near range area, and opening of new open water

channels can also be identified.

The main advantages of this algorithm are the capabil-

ity of sub-pixel resolution and capability to monitor sea ice

alone and continuously by adding VBs when needed. The

estimation cannot be performed in the areas where no distin-

guishable ice features are present in the radar imagery. How-

ever, usually there are such features available in the radar im-

ages of drift ice and VB tracking is possible. Also the imag-

ing geometry imposes some restrictions, especially in the far

range. The typical ice ridges in the Baltic are at maximum

several metres high and are not very well visible in the far

range as their backscattering towards radar is less than that

of larger (higher) targets. However, their shadowing effect is

also less, even though for example a typical 2 m high ridge

has a shadow of approximately 1 km in the range of 15 km,

assuming the radar to be at a 30 m altitude from the sea sur-

face and (locally) flat earth geometry. This may reduce the

number of targets suitable for a VB in the far range.

The lost targets were typically lost as they had drifted away

from the radar and signal-to-noise ratio had become lower.

In general the number of traceable targets depends on the

density of good scatterers (deformed ice, e.g. ridges) within

the radar range. The algorithm radius parameters have been

selected such that adjacent VBs are not very close to each

other. If there are images of poor quality in the radar image

sequence, e.g. due to weather conditions or radio-frequency

signal interference from other sources (e.g. other radars),

more VBs can be lost and the tracking can temporally be

interrupted, but it will be restarted (by adding new VBs) as

soon as the radar image quality has recovered.

We applied the developed algorithm to three test cases.

Here we only computed some relatively simple derived quan-

tities related to the ice dynamics, i.e. velocity, direction, and

the relative area defined by triplets of VBs. The relative VB

triplet areas give information on the divergence and conver-

gence of the ice and also to some degree on the compres-

sion in the ice. Some other and more sophisticated ways to

analyse VB data have been presented e.g. in Karvonen et al.

(2013). The main purpose of this study was the development

and testing of the VB tracking system.

The VB drift results for the test cases were evaluated

based on visual inspection of the animations of the image

sequences with overlaid VB positions. There were no real

buoy data available. The visual analysis showed that the al-

gorithm results correspond to the visual interpretation and

same targets were tracked throughout the radar image se-

quences. This could also be visually verified by extracting

single frames of the radar image time series with a time dif-

ference of e.g. 2–3 h and with some given VB positions indi-

cated on the radar images. Also, according to this verification

the algorithm tracking results and visual inspection were in

good agreement. Also some attempts to estimate the estima-

tion error numerically were made for the test cases.

This VB tracking software complemented some basic VB

data analysis software tools will be included in the radar

servers, making automated ice dynamics analysis in real time

or near-real time possible. The analysis tools will include

the analysis of VB drift velocity and direction as well as di-

vergence based on triangles formed by VB triplets. These

will be computed within the convex polygon defined by the

outer VBs in the image in a given grid and for a given time

step (multiple of the basic time step). This integration is un-

der construction as part of the project “Harnessing Coastal

Radars for Environmental Monitoring Purposes” (HARD-

CORE) funded by the Baltic Sea Research and Development

Programme (BONUS).
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