Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 10, issue 5
The Cryosphere, 10, 2517–2532, 2016
https://doi.org/10.5194/tc-10-2517-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Changing Permafrost in the Arctic and its Global Effects in...

The Cryosphere, 10, 2517–2532, 2016
https://doi.org/10.5194/tc-10-2517-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Oct 2016

Research article | 25 Oct 2016

Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach

William L. Cable et al.

Related authors

Variability of the Surface Energy Balance in Permafrost Underlain Boreal Forest
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Ljudmila Pestryakova, Thomas Schneider v. Deimling, Sebastian Westermann, Evgenii Zakharov, and Moritz Langer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-201,https://doi.org/10.5194/bg-2020-201, 2020
Preprint under review for BG
Short summary
A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018,https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
The new database of the Global Terrestrial Network for Permafrost (GTN-P)
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015,https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary

Related subject area

Field Studies
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020,https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020,https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020,https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Revisiting Austfonna, Svalbard, with potential field methods – a new characterization of the bed topography and its physical properties
Marie-Andrée Dumais and Marco Brönner
The Cryosphere, 14, 183–197, https://doi.org/10.5194/tc-14-183-2020,https://doi.org/10.5194/tc-14-183-2020, 2020
Short summary
Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019,https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary

Cited articles

Barnhart, T. B. and Crosby, B. T.: Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska, Remote Sens., 5, 2813–2837, https://doi.org/10.3390/rs5062813, 2013.
Cable, W. and Romanovsky, V.: Network of Permafrost Observatories in Western Alaska, NSF Arctic Data Center, https://doi.org/10.18739/A24H2B, 2016.
Carlson, H.: Calculation of depth of thaw in frozen ground, Highway Research Board Special Report, Highway Research Board, Washington, D.C., USA, 192–223, 1952.
Dingman, S. and Koutz, F.: Relations among vegetation, permafrost, and potential insolation in central Alaska, Arct. Alp. Res., 6, 37–47, 1974.
Fovell, R. G.: Consensus Clustering of U.S. Temperature and Precipitation Data, J. Climate, 10, 1405–1427, https://doi.org/10.1175/1520-0442(1997)010<1405:CCOUST>2.0.CO;2, 1997.
Publications Copernicus
Download
Short summary
Permafrost temperatures in Alaska are increasing, yet in many areas we lack data needed to assess future changes and potential risks. In this paper we show that classifying the landscape into landcover types is an effective way to scale up permafrost temperature data collected from field monitoring sites. Based on these results, a map of mean annual ground temperature ranges at 1 m depth was produced. The map should be useful for land use decision making and identifying potential risk areas.
Permafrost temperatures in Alaska are increasing, yet in many areas we lack data needed to...
Citation