Articles | Volume 10, issue 4
The Cryosphere, 10, 1631–1645, 2016
https://doi.org/10.5194/tc-10-1631-2016
The Cryosphere, 10, 1631–1645, 2016
https://doi.org/10.5194/tc-10-1631-2016
Research article
28 Jul 2016
Research article | 28 Jul 2016

Statistical indicators of Arctic sea-ice stability – prospects and limitations

Sebastian Bathiany et al.

Related authors

Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017,https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Why CO2 cools the middle atmosphere – a consolidating model perspective
Helge F. Goessling and Sebastian Bathiany
Earth Syst. Dynam., 7, 697–715, https://doi.org/10.5194/esd-7-697-2016,https://doi.org/10.5194/esd-7-697-2016, 2016
Short summary
Early warning signals of tipping points in periodically forced systems
Mark S. Williamson, Sebastian Bathiany, and Timothy M. Lenton
Earth Syst. Dynam., 7, 313–326, https://doi.org/10.5194/esd-7-313-2016,https://doi.org/10.5194/esd-7-313-2016, 2016
Short summary

Related subject area

Sea Ice
Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022,https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Influences of changing sea ice and snow thicknesses on simulated Arctic winter heat fluxes
Laura L. Landrum and Marika M. Holland
The Cryosphere, 16, 1483–1495, https://doi.org/10.5194/tc-16-1483-2022,https://doi.org/10.5194/tc-16-1483-2022, 2022
Short summary
Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022,https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Predictability of Arctic Sea Ice Drift in Coupled Climate Models
Simon F. Reifenberg and Helge F. Goessling
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-41,https://doi.org/10.5194/tc-2022-41, 2022
Revised manuscript accepted for TC
Short summary
A new state-dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022,https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary

Cited articles

Abbot, D. S., Silber, M., and Pierrehumbert, R. T.: Bifurcations leading to summer Arctic sea ice loss, J. Geophys. Res., 116, D19120, https://doi.org/10.1029/2011JD015653, 2011.
Armour, K. C., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K. E., and Bitz, C. M.: The reversibility of sea-ice loss in a state-of-the-art climate model, Geophys. Res. Lett., 38, L16705, https://doi.org/10.1029/2011GL048739, 2011.
Bathiany, S., Claussen, M., and Fraedrich, K.: Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system, Clim. Dynam., 38, 1775–1790, 2012.
Bathiany, S., Claussen, M., and Fraedrich, K.: Detecting hotspots of atmosphere–vegetation interaction via slowing down – Part 1: A stochastic approach, Earth Syst. Dynam., 4, 63–78, https://doi.org/10.5194/esd-4-63-2013, 2013a.
Bathiany, S., Claussen, M., and Fraedrich, K.: Detecting hotspots of atmosphere–vegetation interaction via slowing down – Part 2: Application to a global climate model, Earth Syst. Dynam., 4, 79–93, https://doi.org/10.5194/esd-4-79-2013, 2013b.
Download
Short summary
We examine if a potential "tipping point" in Arctic sea ice, causing abrupt and irreversible sea-ice loss, could be foreseen with statistical early warning signals. We assess this idea by using several models of different complexity. We find robust and consistent trends in variability that are not specific to the existence of a tipping point. While this makes an early warning impossible, it allows to estimate sea-ice variability from only short observational records or reconstructions.